Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Predicting the coefficient of friction (COF) is essential for enhancing the efficiency and reliability of mechanical systems. Nevertheless, traditional mechanistic models relying on fixed values or fitted curves fail to accurately capture this complexity. To address this issue, this paper proposes a model for predicting the COF of wet friction components using an extreme gradient boosting (XGBoost) algorithm optimized by the sparrow search algorithm (SSA). This model effectively captures the nonlinear relationships among relative speed, pressure, temperature, and COF. As a result, the proposed SSA-XGBoost model exhibits excellent predictive performance with a root mean square error (RMSE) of only 0.063, and 88.3% of the COF predictions have a relative error of less than 1%, significantly outperforming other deep-learning algorithms. Additionally, to enhance the understanding of the COF prediction results for wet friction components, the SHapley Additive exPlanations (SHAP) model is used to explore the influence of relative speed, pressure, and temperature on the predicted COF values.

References

1.
Riva
,
G.
,
Varriale
,
F.
, and
Wahlström
,
J.
,
2021
, “
A Finite Element Analysis (FEA) Approach to Simulate the Coefficient of Friction of a Brake System Starting From Material Friction Characterization
,”
Friction
,
9
(
1
), pp.
191
200
.
2.
Varriale
,
F.
,
Candeo
,
S.
,
Riva
,
G.
,
Wahlström
,
J.
, and
Lyu
,
Y.
,
2022
, “
A Brake System Coefficient of Friction Estimation Using 3D Friction Maps
,”
Lubricants
,
10
(
7
), p.
134
.
3.
Wang
,
Y.
,
Hu
,
J. Y.
,
Wang
,
F.
,
Dong
,
H. S.
,
Yan
,
Y. J.
,
Ren
,
Y. J.
,
Zhou
,
C. B.
, and
Yin
,
G. D.
,
2022
, “
Tire Road Friction Coefficient Estimation: Review and Research Perspectives
,”
Chin. J. Mech. Eng.
,
35
(
1
), p.
6
.
4.
Singh
,
D.
,
Patel
,
H.
,
Habal
,
A.
,
Das
,
A. K.
,
Kapgate
,
B. P.
, and
Rajkumar
,
K.
,
2019
, “
Evolution of Coefficient of Friction Between Tire and Pavement Under Wet Conditions Using Surface Free Energy Technique
,”
Constr. Build. Mater.
,
204
, pp.
105
112
.
5.
Guo
,
W. W.
,
Chu
,
L.
,
Yang
,
L. T.
, and
Fwa
,
T. F.
,
2023
, “
Determination of Tire Rubber-Pavement Directional Coefficient of Friction Based on Contact Mechanism Considerations
,”
Tribol. Int.
,
179
, p.
108178
.
6.
Barrea
,
A.
,
Bulens
,
D. C.
,
Lefevre
,
P.
, and
Thonnard
,
J.-L.
,
2016
, “
Simple and Reliable Method to Estimate the Fingertip Static Coefficient of Friction in Precision Grip
,”
IEEE Trans. Haptic
,
9
(
4
), pp.
492
498
.
7.
Farhadi
,
S.
,
Shekari
,
Y.
, and
Ansari
,
H.
,
2024
, “
Numerical and Experimental Investigation of Heat Transfer in the Spiral Coiled Tubes: Correlation Development for Nusselt Number and Friction Coefficient Calculation
,”
Int. Commun. Heat Mass Transfer
,
155
, p.
107504
.
8.
Ghatrehsamani
,
S.
, and
Akbarzadeh
,
S.
,
2019
, “
Predicting the Wear Coefficient and Friction Coefficient in Dry Point Contact Using Continuum Damage Mechanics
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
233
(
3
), pp.
447
455
.
9.
Kelemenová
,
T.
,
Dovica
,
M.
,
Božek
,
P.
,
Koláriková
,
I.
,
Benedik
,
O.
,
Virgala
,
I.
,
Prada
,
E.
,
Miková
,
L.
,
Kot
,
T.
, and
Kelemen
,
M.
,
2020
, “
Specific Problems in Measurement of Coefficient of Friction Using Variable Incidence Tribometer
,”
Symmetry
,
12
(
8
), p.
1235
.
10.
Hrabovsky
,
L.
,
Fries
,
J.
,
Kudrna
,
L.
, and
Gaszek
,
J.
,
2022
, “
Determination of the Coefficient of Friction in a Pulley Groove by the Indirect Method
,”
Coatings
,
12
(
5
), p.
606
.
11.
Hrabovsky
,
L.
,
Mlcak
,
T.
,
Molnar
,
V.
,
Fedorko
,
G.
, and
Michalik
,
P.
,
2023
, “
Experimental Measurement of a Pulling Force and Determination of a Friction Coefficient During Driven Transport Rollers’ Movement
,”
Measurement
,
217
, p.
113092
.
12.
Zhou
,
Y.
,
Peng
,
M.
,
Zuo
,
X.
, and
Xu
,
J.
,
2022
, “
Correlation Between Friction Coefficient and Friction Vibration in Running-In Process Based on Cross Recurrence Plots
,”
ASME J. Tribol.
,
144
(
1
), p.
011703
.
13.
Hasan
,
B.
, and
Karabacak
,
Y. E.
,
2023
, “
Triboinformatic Modeling of the Friction Force and Friction Coefficient in a Cam-Follower Contact Using Machine Learning Algorithms
,”
Tribol. Int.
,
181
, p.
108336
.
14.
Hasan
,
B.
, and
Karabacak
,
Y. E.
,
2023
, “
Machine Learning-Based Prediction of Friction Torque and Friction Coefficient in Statically Loaded Radial Journal Bearings
,”
Tribol. Int.
,
186
, p.
108592
.
15.
Xie
,
H.
,
Wang
,
Z.
,
Qin
,
N.
,
Du
,
W.
, and
Qian
,
L.
,
2020
, “
Prediction of Friction Coefficients During Scratch Based on an Integrated Finite Element and Artificial Neural Network Method
,”
ASME J. Tribol.
,
142
(
2
), p.
021703
.
16.
Rasol
,
M.
,
Schmidt
,
F.
, and
Ientile
,
S.
,
2023
, “
FriC-PM: Machine Learning-Based Road Surface Friction Coefficient Predictive Model Using Intelligent Sensor Data
,”
Constr. Build. Mater.
,
370
, p.
130567
.
17.
Gutierrez
,
R.
,
Fang
,
T. S.
,
Mainwaring
,
R.
, and
Reddyhoff
,
T.
,
2024
, “
Predicting the Coefficient of Friction in a Sliding Contact by Applying Machine Learning to Acoustic Emission Data
,”
Friction
,
12
(
6
), pp.
1299
1321
.
18.
Kolev
,
M.
,
Drenchev
,
L.
,
Petkov
,
V.
,
Dimitrova
,
R.
,
Kolev
,
K.
, and
Simeonova
,
T.
,
2024
, “
Fabrication and Dry-Sliding Wear Characterization of Open-Cell AlSn6Cu-Al2O3 Composites With LSTM-Based Coefficient of Friction Prediction
,”
Metals-Basel
,
14
(
4
), pp.
2075
4701
.
19.
Pasha
,
M. B.
,
Rao
,
R. N.
,
Ismail
,
S.
,
Gupta
,
M.
, and
Prasad
,
P. S.
,
2024
, “
Tribo-Informatics Approach to Predict Wear and Friction Coefficient of Mg/Si3N4 Composites Using Machine Learning Techniques
,”
Tribol. Int.
,
196
, p.
109696
.
20.
Wu
,
J. P.
,
Cui
,
J. H.
,
Shu
,
W. Y.
,
Wang
,
L. Y.
, and
Li
,
H. Y.
,
2024
, “
Coupling Mechanism and Data-Driven Approaches for High Power Wet Clutch Torque Modeling and Analysis
,”
Tribol. Int.
,
191
, p.
109166
.
21.
Sun
,
Z. Y.
,
Hao
,
X.
,
Li
,
W.
,
Huyan
,
J.
, and
Sun
,
H. C.
,
2022
, “
Asphalt Pavement Friction Coefficient Prediction Method Based on Genetic-Algorithm-Improved Neural Network (GAI-NN) Model
,”
Can. J. Civil Eng.
,
49
(
1
), pp.
109
120
.
22.
Partovi
,
A.
,
Wang
,
H. M.
,
Sadeghi
,
B.
, and
Wu
,
P. D.
,
2023
, “
A Machine Learning Approach for Determination of Coefficient of Friction From Ring Compression Test
,”
Tribol. Int.
,
180
, p.
108198
.
23.
Gang
,
W.
,
Liu
,
W. M.
,
Wen
,
X. L.
,
Wei
,
P.
,
Cao
,
H.
,
Bai
,
P. P.
, and
Tian
,
Y.
,
2024
, “
Effective Tribological Performance-Oriented Concentration Optimization of Lubricant Additives Based on a Machine Learning Approach
,”
Tribol. Int.
,
197
, p.
109770
.
24.
Parsa
,
A. B.
,
Movahedi
,
A.
,
Taghipour
,
H.
,
Derrible
,
S.
, and
Mohammadian
,
A.
,
2020
, “
Toward Safer Highways, Application of XGBoost and SHAP for Real-Time Accident Detection and Feature Analysis
,”
Accident Anal. Prev.
,
136
, p.
105405
.
25.
Chao
,
Y.
,
Chen
,
M. Y.
, and
Yuan
,
Q.
,
2021
, “
The Application of XGBoost and SHAP to Examining the Factors in Freight Truck-Related Crashes: An Exploratory Analysis
,”
Accident Anal. Prev.
,
158
, p.
106153
.
26.
Cakiroglu
,
C.
,
Demir
,
S.
,
Ozdemir
,
M. H.
,
Aylak
,
B. L.
,
Sariisik
,
G.
, and
Abualigah
,
L.
,
2024
, “
Data-Driven Interpretable Ensemble Learning Methods for the Prediction of Wind Turbine Power Incorporating SHAP Analysis
,”
Expert Syst. Appl.
,
237
, p.
121464
.
27.
Zhang
,
J. Y.
,
Ma
,
X. L.
,
Zhang
,
J. L.
,
Sun
,
D. L.
,
Zhou
,
X. Z.
,
Mi
,
C. L.
, and
Wen
,
H. J.
,
2023
, “
Insights Into Geospatial Heterogeneity of Landslide Susceptibility Based on the SHAP-XGBoost Model
,”
J. Environ. Manage.
,
332
, p.
117357
.
28.
Kim
,
Y.
, and
Kim
,
Y.
,
2022
, “
Explainable Heat-Related Mortality With Random Forest and SHapley Additive ExPlanations (SHAP) Models
,”
Sustain. Cities Soc.
,
79
, p.
103677
.
29.
Zhou
,
Y. N.
,
Wu
,
W.
,
Wang
,
H.
,
Zhang
,
X.
,
Yang
,
C.
, and
Liu
,
H. B.
,
2022
, “
Identification of Soil Texture Classes Under Vegetation Cover Based on Sentinel-2 Data With SVM and SHAP Techniques
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
,
15
, pp.
3758
3770
.
30.
Wen
,
X.
,
Xie
,
Y. C.
,
Wu
,
L. T.
, and
Jiang
,
L.
,
2021
, “
Quantifying and Comparing the Effects of Key Risk Factors on Various Types of Roadway Segment Crashes With LightGBM and SHAP
,”
Accident Anal. Prev.
,
159
, p.
106261
.
31.
Ekanayake
,
I. U.
,
Meddage
,
D. P. P.
, and
Rathnayake
,
U.
,
2022
, “
A Novel Approach to Explain the Black-box Nature of Machine Learning in Compressive Strength Predictions of Concrete Using Shapley Additive Explanations (SHAP)
,”
Case Stud. Constr. Mater.
,
16
, p.
e01059
.
32.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
KDD ‘16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Association for Computing Machinery
,
New York, USA
, pp.
785
794
.
33.
Xue
,
J.
, and
Shen
,
B.
,
2020
, “
A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm
,”
Syst. Sci. Control Eng.
,
8
(
1
), pp.
22
34
.
34.
Lundberg
,
S. M.
, and
Lee
,
S. I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS'2017), Neural Information Processing Systems (NIPS)
,
Long Beach, CA
, p.
30
.
You do not currently have access to this content.