Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Rolling element bearings are an integral component of electric vehicles, supporting radial and axial loads in powertrain components such as electric motor shafts and wheel bearings. Fast-switching inverters enable precise, variable control of motor performance at the cost of possible stray current leakage into mechanical components. These currents naturally seek to cross the insulating fluid film in rolling element bearings. In doing so, a destructive discharge or arc may form and cause irreversible damage to metallic bearing surfaces. A unique contribution of the work is that it provides a method to use the statistical height distribution to predict the likelihood of electrical breakdown and discharging. To predict film thickness it uses a closed-form elasto-hydrodynamic lubrication (EHL) models to present a semi-analytical model of this discharging phenomenon. Existing EHL models are modified for mixed lubrication and electrical contacts by incorporating a solid rough surface asperity contact model and a flow factor modified lubrication model. The model accounts for transient effects and considers changes in speed and other parameters during operation. The resulting model predicts the likelihood of surface damage and electrical properties of the bearings through the statistical asperity height above a critical value calculation. The damaged regions predicted by the model are in qualitative agreement with the experimental tests.

References

1.
Whittle
,
M.
,
Trevelyan
,
J.
, and
Tavner
,
P. J.
,
2013
, “
Bearing Currents in Wind Turbine Generators
,”
J. Renewable Sustainable Energy
,
5
(
5
), p.
053128
.
2.
He
,
F.
,
Xie
,
G.
, and
Luo
,
J.
,
2020
, “
Electrical Bearing Failures in Electric Vehicles
,”
Friction
,
8
(
1
), pp.
4
28
.
3.
Chen
,
Y.
,
Jha
,
S.
,
Raut
,
A.
,
Zhang
,
W.
, and
Liang
,
H.
,
2020
, “
Performance Characteristics of Lubricants in Electric and Hybrid Vehicles: A Review of Current and Future Needs
,”
Front. Mech. Eng.
,
6
, p.
571464
.
4.
Lin
,
C.-M.
,
Chiou
,
Y.-C.
, and
Lee
,
R.-T.
,
2001
, “
Pitting Mechanism on Lubricated Surface of Babbitt Alloy/Bearing Steel Pair Under AC Electric Field
,”
Wear
,
249
(
1–2
), pp.
132
141
.
5.
Farfan-Cabrera
,
L. I.
,
Erdemir
,
A.
,
Cao-Romero-Gallegos
,
J. A.
,
Alam
,
I.
, and
Lee
,
S.
,
2022
, “
Electrification Effects on Dry and Lubricated Sliding Wear of Bearing Steel Interfaces
,”
Wear
,
516
, p.
204592
.
6.
Hemanth
,
G.
, and
Suresha
,
B.
,
2021
, “
Hybrid and Electric Vehicle Tribology: A Review
,”
Surf. Topogr.: Metrol. Prop.
,
9
(
4
), p.
043001
.
7.
Prasad
,
S.
, and
Krishnanunni
,
S.
,
2020
, “
Review on Analysis of Failures Modes in the Electric Vehicles Due to Electric Bearings
,”
Int. Res. J. Eng. Technol.
,
7
(
12
), pp.
1722
1725
.
8.
Raadnui
,
S.
, and
Kleesuwan
,
S.
,
2011
, “
Electrical Pitting Wear Debris Analysis of Grease-Lubricated Rolling Element Bearings
,”
Wear
,
271
(
9–10
), pp.
1707
1718
.
9.
Bond
,
S.
,
Jackson
,
R. L.
, and
Mills
,
G.
,
2024
, “
The Influence of Various Grease Compositions and Silver Nanoparticle Additives on Electrically Induced Rolling-Element Bearing Damage
,”
Friction
,
12
(
4
), pp.
796
811
.
10.
Prashad
,
H.
,
2002
, “
Diagnosis of Rolling-Element Bearings Failure by Localized Electrical Current Between Track Surfaces of Races and Rolling-Elements
,”
ASME J. Tribol.
,
124
(
3
), pp.
468
473
.
11.
Suzumura
,
J.
,
2016
, “
Prevention of Electrical Pitting on Rolling Bearings by Electrically Conductive Grease
,”
Q. Rep. RTRI
,
57
(
1
), pp.
42
47
.
12.
Jackson
,
R. L.
,
2024
, “Modeling Electrical Resistance of Lubricated Contacts,”
Electric Vehicle Tribology
,
L. I.
Farfan-Cabrera
and
A.
Erdemir
, eds.,
Elsevier
,
New York
, pp.
207
224
.
13.
Jackson
,
R. L.
, and
Angadi
,
S.
,
2023
, “
Electrical Contact During a Rolling Vibratory Motion Considering Mixed Lubrication
,”
ASME J. Tribol.
,
145
(
8
), p.
082201
.
14.
Schneider
,
V.
,
Behrendt
,
C.
,
Höltje
,
P.
,
Cornel
,
D.
,
Becker-Dombrowsky
,
F. M.
,
Puchtler
,
S.
,
Gutiérrez Guzmán
,
F.
,
Ponick
,
B.
,
Jacobs
,
G.
, and
Kirchner
,
E.
,
2022
, “
Electrical Bearing Damage, A Problem in the Nano – and Macro-Range
,”
Lubricants
,
10
(
8
), p.
194
.
15.
Busse
,
D.
,
Erdman
,
J.
,
Kerkman
,
R. J.
,
Schlegel
,
D.
, and
Skibinski
,
G.
,
1997
, “
System Electrical Parameters and Their Effects on Bearing Currents
,”
IEEE Trans. Ind. Appl.
,
33
(
2
), pp.
577
584
.
16.
Gonda
,
A.
,
Paulus
,
S.
,
Graf
,
S.
,
Koch
,
O.
,
Götz
,
S.
, and
Sauer
,
B.
,
2024
, “
Basic Experimental and Numerical Investigations to Improve the Modeling of the Electrical Capacitance of Rolling Bearings
,”
Tribol. Int.
,
193
, p.
109354
.
17.
Sawa
,
K.
,
Watanabe
,
Y.
, and
Ueno
,
T.
, “
Effect of Lubricant on Sliding Conditions in Au-Plated Slip-Ring System for Small Electric Power Transfer
,”
2014 IEEE 60th Holm Conference on Electrical Contacts (Holm)
,
New Orleans, LA
,
Oct. 12–15
.
18.
Sawa
,
K.
,
Takemasa
,
Y.
,
Watanabe
,
Y.
,
Ueno
,
T.
, and
Yamanoi
,
M.
, “
Fluctuation Components of Contact Voltage at AgPd Brush and Au-Plated Slip-Ring System With Lubricant
,”
2015 IEEE 61st Holm Conference on Electrical Contacts (Holm)
,
San Diego, CA
,
Oct. 11–14
.
19.
Jackson
,
R. L.
,
Coker
,
A. B.
,
Tucker
,
Z.
,
Hossain
,
M. S.
, and
Mills
,
G.
,
2019
, “
An Investigation of Silver Nanoparticle Laden Lubricants for Electrical Contacts
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
9
(
2
), pp.
193
200
.
20.
Crilly
,
L.
,
Jackson
,
R. L.
,
Mills
,
G.
,
Bond
,
S.
, and
Bhargava
,
S.
,
2022
, “
An Exploration of the Friction, Wear, and Electrical Effects of Nanoparticle Enhanced and Conventional Lubricants
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
12
(
11
), pp.
1757
1770
.
21.
Cao
,
Z.
,
Xia
,
Y.
,
Liu
,
L.
, and
Feng
,
X.
,
2019
, “
Study on the Conductive and Tribological Properties of Copper Sliding Electrical Contacts Lubricated by Ionic Liquids
,”
Tribol. Int.
,
130
, pp.
27
35
.
22.
Chu
,
L.-M.
,
Lin
,
J.-R.
,
Chang
,
Y.-P.
, and
Li
,
W.-L.
,
2013
, “
Effects of Surface Forces and Surface Roughness on Squeeze Thin Film of Elastohydrodynamic Lubricated Spherical Conjunction
,”
Lubr. Sci.
,
25
(
1
), pp.
11
28
.
23.
Chevalier
,
F.
,
Lubrecht
,
A. A.
,
Cann
,
P. M. E.
,
Colin
,
F.
, and
Dalmaz
,
G.
,
1998
, “
Film Thickness in Starved EHL Point Contacts
,”
ASME J. Tribol.
,
120
(
1
), pp.
126
133
.
24.
Sanchez Garrido
,
D.
,
Leventini
,
S.
, and
Martini
,
A.
,
2021
, “
Effect of Temperature and Surface Roughness on the Tribological Behavior of Electric Motor Greases for Hybrid Bearing Materials
,”
Lubricants
,
9
(
6
), p.
59
.
25.
Du
,
H.
,
Xie
,
W.
,
Wang
,
J.
, and
Venner
,
C. H.
,
2025
, “
Rapid Failure of Lubricated Contacts With Grease Under ZEV Condition
,”
ASME J. Tribol.
,
147
(
1
), p.
014301
.
26.
Kanazawa
,
Y.
,
Sayles
,
R. S.
, and
Kadiric
,
A.
,
2017
, “
Film Formation and Friction in Grease Lubricated Rolling-Sliding Non-Conformal Contacts
,”
Tribol. Int.
,
109
, pp.
505
518
.
27.
Zapletal
,
T.
,
Sperka
,
P.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2020
, “
On the Relation Between Friction Increase and Grease Thickener Entraining on a Border of Mixed EHL Lubrication
,”
Lubricants
,
8
(
2
), p.
12
.
28.
Cyriac
,
F.
,
Lugt
,
P. M.
,
Bosman
,
R.
,
Padberg
,
C. J.
, and
Venner
,
C. H.
,
2016
, “
Effect of Thickener Particle Geometry and Concentration on the Grease EHL Film Thickness at Medium Speeds
,”
Tribol. Lett.
,
61
(
1
), pp.
1
13
.
29.
Lubrecht
,
A.
,
Venner
,
C. H.
, and
Colin
,
F.
,
2009
, “
Film Thickness Calculation in Elasto-Hydrodynamic Lubricated Line and Elliptical Contacts: The Dowson, Higginson, Hamrock Contribution
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
223
(
3
), pp.
511
515
.
30.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part II
Ellipticity Parameter Results
,”
J. Lubr. Techcol.
,
98
(
3
), pp.
375
381
.
31.
Hamrock
,
B. J.
,
Schmid
,
B. J.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
CRC Press
,
Boca Raton, FL
.
32.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
100
(
1
), pp.
12
17
.
33.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Tribol.
,
101
(
2
), pp.
220
230
.
34.
Lubrecht
,
A.
,
Graille
,
D.
,
Venner
,
C.
, and
Greenwood
,
J.
,
1998
, “
Waviness Amplitude Reduction in EHL Line Contacts Under Rolling-Sliding
,”
ASME J. Tribol.
,
120
(
4
), pp.
705
709
.
35.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
, “
Multigrid Techniques: A Fast and Efficient Method for the Numerical Simulation of Elastohydrodynamically Lubricated Point Contact Problems
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
214
(
1
), pp.
43
62
.
36.
Venner
,
C. H.
, and
ten Napel
,
W. E.
,
1992
, “
Surface Roughness Effects in an EHL Line Contact
,”
ASME J. Tribol.
,
114
(
3
), pp.
616
622
.
37.
Jackson
,
R. L.
,
Malucci
,
R. D.
,
Angadi
,
S.
, and
Polchow
,
J. R.
, “
A Simplified Model of Multiscale Electrical Contact Resistance and Comparison to Existing Closed Form Models
,”
2009 Proceedings of the 55th IEEE Holm Conference on Electrical Contacts
,
Vancouver, Canada
,
Sept. 14–16
,
IEEE
, pp.
28
35
.
38.
Sisko
,
A.
,
1958
, “
The Flow of Lubricating Greases
,”
Ind. Eng. Chem.
,
50
(
12
), pp.
1789
1792
.
39.
Greenwood
,
J.
, and
Kauzlarich
,
J.
,
1998
, “
Elastohydrodynamic Film Thickness for Shear-Thinning Lubricants
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
212
(
3
), pp.
179
191
.
40.
Madiedo
,
J. M.
,
Franco
,
J. M.
,
Valencia
,
C. n.
, and
Gallegos
,
C. s.
,
2000
, “
Modeling of the Non-Linear Rheological Behavior of a Lubricating Grease at Low-Shear Rates
,”
ASME J. Tribol.
,
122
(
3
), pp.
590
596
.
41.
Carreau
,
P. J.
,
1972
, “
Rheological Equations From Molecular Network Theories
,”
Trans. Soc. Rheol.
,
16
(
1
), pp.
99
127
. .
42.
An
,
B.
,
Wang
,
X.
,
Xu
,
Y.
, and
Jackson
,
R. L.
,
2019
, “
Deterministic Elastic-Plastic Modelling of Rough Surface Contact Including Spectral Interpolation and Comparison to Theoretical Models
,”
Tribol. Int.
,
135
, pp.
246
258
.
43.
Jackson
,
R. L.
,
Crandall
,
E. R.
, and
Bozack
,
M. J.
,
2015
, “
Rough Surface Electrical Contact Resistance Considering Scale Dependent Properties and Quantum Effects
,”
J. Appl. Phys.
,
117
(
19
), p.
195101
.
44.
Liu
,
Z.
, and
Zhang
,
L.
,
2020
, “
A Review of Failure Modes, Condition Monitoring and Fault Diagnosis Methods for Large-Scale Wind Turbine Bearings
,”
Measurement
,
149
, p.
107002
.
45.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
The Behavior of Thrust Washer Bearings Considering Mixed Lubrication and Asperity Contact
,”
Tribol. Trans.
,
49
(
2
), pp.
233
247
.
46.
Ruan
,
B.
,
Salant
,
R. F.
, and
Green
,
I.
,
1997
, “
A Mixed Lubrication Model of Liquid/Gas Mechanical Face Seals
,”
Tribol. Trans.
,
40
(
4
), pp.
647
657
.
47.
Varney
,
P.
, and
Green
,
I.
,
2017
, “
Impact Phenomena in a Noncontacting Mechanical Face Seal
,”
ASME J. Tribol.
,
139
(
2
), p.
022201
.
48.
Lebeck
,
A.
,
1999
, “
Mixed Lubrication in Mechanical Face Seals With Plain Faces
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
213
(
3
), pp.
163
175
.
49.
Polycarpou
,
A. A.
, and
Etsion
,
I.
,
1998
, “
Static Sealing Performance of gas Mechanical Seals Including Surface Roughness and Rarefaction Effects
,”
Tribol. Trans.
,
41
(
4
), pp.
531
536
.
50.
Masjedi
,
M.
, and
Khonsari
,
M.
,
2014
, “
Theoretical and Experimental Investigation of Traction Coefficient in Line-Contact EHL of Rough Surfaces
,”
Tribol. Int.
,
70
, pp.
179
189
.
51.
Davis
,
C. L.
,
Sadeghi
,
F.
, and
Krousgrill
,
C. M.
,
1999
, “
A Simplified Approach to Modeling Thermal Effects in Wet Clutch Engagement: Analytical and Experimental Comparison
,”
ASME J. Tribol.
,
122
(
1
), pp.
110
118
.
52.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. Lond. A
,
295
(
1442
), pp.
300
319
.
53.
Chu
,
N. R.
,
Jackson
,
R. L.
,
Wang
,
X.
,
Gangopadhyay
,
A.
, and
Ghaednia
,
H.
,
2021
, “
Evaluating Elastic-Plastic Wavy and Spherical Asperity-Based Statistical and Multi-Scale Rough Surface Contact Models With Deterministic Results
,”
Materials
,
14
(
14
), p.
3864
.
54.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Trib. Int.
,
39
(
9
), pp.
906
914
.
55.
McCool
,
J. I.
,
1987
, “
Relating Profile Instrument Measurements to the Functional Performance of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
264
270
.
56.
Front
,
I.
,
1990
, “
The Effects of Closing Force and Surface Roughness on Leakage in Radial Face Seals
,”
MS thesis
,
Technion, Israel Institute of Technology
,
Haifa, Israel
.
57.
Cooper
,
M.
,
Mikic
,
B.
, and
Yovanovich
,
M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
279
300
.
58.
Haynes
,
W. M.
,
2016
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
.
59.
Morris
,
S. A.
,
Leighton
,
M.
, and
Morris
,
N. J.
,
2022
, “
Electrical Field Strength in Rough Infinite Line Contact Elastohydrodynamic Conjunctions
,”
Lubricants
,
10
(
5
), p.
87
.
60.
Farfan-Cabrera
,
L. I.
,
Erdemir
,
A.
,
Cao-Romero-Gallegos
,
J. A.
, and
Aguilar-Rosas
,
O. A.
,
2024
, “Electrified Tribotesting of Lubricants and Materials Used in Electric Vehicle Drivelines,”
Electric Vehicle Tribology
,
L. I.
Farfan-Cabrera
and
A.
Erdemir
, eds.,
Elsevier
,
New York
, pp.
265
276
.
61.
Joshi
,
A.
, and
Blennow
,
J.
, “
Electrical Characterization of Bearing Lubricants
,”
Proceedings of 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)
,
Des Moines, IA
.
Oct. 19–22
, pp.
586
589
.
62.
Lee
,
P. M.
,
Sanchez
,
C.
,
Frazier
,
C.
,
Velasquez
,
A.
, and
Kostan
,
T.
,
2023
, “
Tribological Evaluation of Electric Vehicle Driveline Lubricants in an Electrified Environment
,”
Front. Mech. Eng.
,
9
, p.
1215352
.
63.
Holweger
,
W.
,
Bobbio
,
L.
,
Mo
,
Z.
,
Fliege
,
J.
,
Goerlach
,
B.
, and
Simon
,
B.
,
2023
, “
A Validated Computational Study of Lubricants Under White Etching Crack Conditions Exposed to Electrical Fields
,”
Lubricants
,
11
(
2
), p.
45
.
You do not currently have access to this content.