Graphical Abstract Figure

General case of point contact problem

Graphical Abstract Figure

General case of point contact problem

Close modal

Abstract

Inconel 690 alloys have been widely applied in the manufacturing of steam generator tubes for pressurized water reactors at nuclear power station. However, complicated impact-sliding fretting corrosion behavior always accompanies its entire service period. This study, which is based on experimental research and numerical analysis methods, investigates the effect of impact frequency on the impact-sliding fretting corrosion behavior of Inconel 690 alloy tubes. Then, machine learning is applied to predict the evolution law of the degree of damage. The results show that different impact frequencies do not affect the damage failure mechanism of the impact-sliding fretted alloy tube surface. However, an increase in impact frequency will lead to a more severe degree of damage. The corresponding maximum wear depths of the 5-, 10-, and 15-Hz impact frequencies caused by the impact-sliding fretting wear scars were approximately 6.630, 11.105, and 14.485 μm, respectively. The corresponding wear volume increased from approximately 3.626 × 104 μm3 to 6.325 × 104 μm3 and 8.395 × 104 μm3. Furthermore, machine learning modeling demonstrates perfect robustness and precision in predicting the damage evolution rule of the impact-sliding fretting corrosion behavior of an alloy tube.

References

1.
Guo
,
X. L.
,
Lai
,
P.
,
Li
,
L.
,
Tang
,
L. C.
, and
Zhang
,
L. F.
,
2020
, “
Progress in Studying the Fretting Wear/Corrosion of Nuclear Steam Generator Tubes
,”
Ann. Nucl. Energy
,
144
, p.
107556
.
2.
Cai
,
Z.
,
Li
,
Z.
,
Yin
,
M.
,
Zhu
,
M.
, and
Zhou
,
Z.
,
2020
, “
A Review of Fretting Study on Nuclear Power Equipment
,”
Tribol. Int.
,
144
, p.
106095
.
3.
Cai
,
Z.
,
Chen
,
Z.
,
Sun
,
Y.
,
Jin
,
J.
,
Peng
,
J.
, and
Zhu
,
M.
,
2019
, “
Development of a Novel Cycling Impact–Sliding Wear Rig to Investigate the Complex Friction Motion
,”
Friction
,
7
(
1
), pp.
32
43
.
4.
Salunkhe
,
V. G.
,
Desavale
,
R. G.
, and
Kumbhar
,
S. G.
,
2022
, “
Vibration Analysis of Deep Groove Ball Bearing Using Finite Element Analysis and Dimension Analysis
,”
AMSE J. Tribol.
,
144
(
8
), p.
081202
.
5.
Ma
,
X.
,
Tan
,
W.
,
Bonzom
,
R.
,
Mi
,
X.
, and
Zhu
,
G.
,
2023
, “
Impact-Sliding Fretting Tribocorrosion Behavior of 316L Stainless Steel in Solution With Different Halide Concentrations
,”
Friction
,
11
(
12
), pp.
2310
2328
.
6.
Guo
,
K.
,
Jiang
,
N.
,
Qi
,
H.
,
Feng
,
Z.
,
Wang
,
Y.
, and
Tan
,
W.
,
2020
, “
Experimental Investigation of Impact-Sliding Interaction and Fretting Wear Between Tubes and Anti-Vibration Bars in Steam Generators
,”
Nucl. Eng. Technol.
,
52
(
6
), pp.
1304
1317
.
7.
Yin
,
M. G.
,
Zhang
,
L.
,
Huang
,
L. X.
, and
Long
,
J. Q.
,
2024
, “
Investigation of the Impact-Sliding Fretting Behaviour of 690 Alloy Tube Using the Finite Element Method
,”
AMSE J. Tribol.
,
146
(
11
), p.
111502
.
8.
Wang
,
C.
,
Aldakheel
,
F.
,
Zhang
,
C.W.
,
Gu
,
L.
, and
Wriggers
,
P.
,
2023
, “
Effect of Laser Mode and Power on the Tribological Behavior of Additively Manufactured Inconel 718 Alloy
,”
Int. J. Mech. Sci.
,
253
, p.
108410
.
9.
Zhang
,
F.
,
Yin
,
M.
, and
Li
,
Q.
,
2022
, “
Fretting Wear Behavior of Micro-Arc Oxidation Coating Fabricated on AZ91 Magnesium Alloy
,”
AMSE J. Tribol.
,
144
(
4
), p.
041703
.
10.
Li
,
D. Y.
, and
Pan
,
H.
,
2020
, “
A Wearing Energy Model
,”
J. Appl. Phys.
,
128
(
19
), p.
195105
.
11.
Cao
,
S. F.
, and
Mischler
,
S.
,
2018
, “
Modeling Tribocorrosion of Passive Metals–A Review
,”
Curr. Opin. Solid State Mater. Sci.
,
22
(
4
), pp.
127
141
.
12.
Baydoun
,
S.
,
Fartas
,
M.
, and
Fouvry
,
S.
,
2023
, “
Comparison Between Physical and Machine Learning Modeling to Predict Fretting Wear Volume
,”
Tribol. Int.
,
177
, p.
107936
.
13.
Sose
,
A. T.
,
Joshi
,
S. Y.
,
Kunche
,
L. K.
,
Wang
,
F.
, and
Deshmukh
,
S. A.
,
2023
, “
A Review of Recent Advances and Applications of Machine Learning in Tribology
,”
Phys. Chem. Chem. Phys.
,
25
(
6
), pp.
4408
4443
.
14.
Han
,
S.
,
Khatir
,
S.
,
Wang
,
C.
, and
Wahab
,
M. A.
,
2023
, “
An Improved Artificial Neural Network for the Direct Prediction of Fretting Fatigue Crack Initiation Lifetime
,”
Tribol. Int.
,
183
, p.
108411
.
15.
Rajput
,
A. S.
, and
Das
,
S.
,
2023
, “
A Machine Learning Approach to Predict the Wear Behaviour of Steels
,”
Tribol. Int.
,
185
, p.
108500
.
16.
Sieberg
,
P. M.
, and
Hanke
,
S.
,
2023
, “
Challenges and Potentials in the Classification of Wear Mechanisms by Artificial Intelligence
,”
Wear.
,
522
, p.
204725
.
17.
Wang
,
G.
,
Zhou
,
S.
, and
Yin
,
M.
,
2024
, “
Effects of High-Temperature and High-Pressure Immersion Corrosion Durations on the Fretting Tribo-Corrosion Behaviors of Inconel 690 Alloy
,”
Wear
,
556–557
, p.
205501
.
18.
Yin
,
M.
,
Shao
,
Y.
,
Kang
,
X.
,
Long
,
J.
, and
Zhang
,
X.
,
2023
, “
Fretting Corrosion Behavior of WC-10Co-4Cr Coating on Inconel 690 Alloy by HVOF Thermal Spraying
,”
Tribol. Int.
,
177
, p.
107975
.
19.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-Bauer
,
C. A. J.
,
2001
, “
An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
3
), pp.
209
229
.
20.
Amanov
,
A.
, and
Umarov
,
R.
,
2018
, “
The Effects of Ultrasonic Nanocrystal Surface Modification Temperature on the Mechanical Properties and Fretting Wear Resistance of Inconel 690 Alloy
,”
Appl. Surf. Sci.
,
441
, pp.
515
529
.
21.
Zhou
,
W. B.
,
Zhang
,
R. B.
, and
Fang
,
D. N.
,
2016
, “
Design and Analysis of the Porous ZrO2/(ZrO2+ Ni) Ceramic Joint With Load Bearing–Heat Insulation Integration
,”
Ceram. Int.
,
42
(
1
), pp.
1416
1424
.
22.
Lou
,
F.
,
Ma
,
Z.
,
Nie
,
S.
,
Ji
,
H.
, and
Yin
,
F.
,
2022
, “
A Bidirectional Wear Model Based on Inverse Gaussian (IG) Process for PEEK Against AISI630 Stainless Steel in Seawater Hydraulic Components
,”
Tribol. Int.
,
175
, p.
107815
.
23.
Shen
,
F.
,
Ke
,
L.-L.
, and
Zhou
,
K.
,
2021
, “
A Debris Layer Evolution-Based Model for Predicting Both Fretting Wear and Fretting Fatigue Lifetime
,”
Int. J. Fatigue
,
142
, p.
105928
. .
24.
Yang
,
Y.
,
Xu
,
J.
, and
Liang
,
Y.
,
2023
, “
A Fretting Wear Model Considering Formation of Tribolayers
,”
Ind. Lubr. Tribol.
,
75
(
4
), pp.
372
379
.
25.
Capozza
,
R.
, and
Hanley
,
K. J.
,
2022
, “
A Comprehensive Model of Plastic Wear Based on the Discrete Element Method
,”
Powder Technol.
,
410
, p.
117864
.
26.
Lewis
,
R.
,
2007
, “
A Modelling Technique for Predicting Compound Impact Wear
,”
Wear
,
262
(
11–12
), pp.
1516
1521
.
27.
Huang
,
P.
,
Guo
,
D.
, and
Wen
,
S. Z.
,
2013
,
Interface Mechanics
, Vol.
2
,
Tsinghua University Press
,
China
, pp.
19
24
.
28.
Wang
,
Y.
,
2023
, “
Research on Surface Integrity of TC4 Titanium Alloy by Ultrasonic Rolling
,” Master's Thesis, Shandong University of Technology.
29.
Guo
,
J. C.
,
Shen
,
W. B.
,
Bian
,
S. F.
, and
Ji
,
B.
,
2017
, “
Approximate Calculations for the Surface Area of Triaxial Ellipsoid
,”
Hydrogr. Surv. Charting
,
37
(
04
), pp.
15
18+23
.
30.
Guo
,
K.
,
Tian
,
C.
,
Wang
,
Y.
,
Wang
,
Y.
, and
Tan
,
W.
,
2020
, “
An Energy-Based Model for Impact-Sliding Fretting Wear Between Tubes and Anti-Vibration Bars in Steam Generators
,”
Tribol. Int.
,
148
, p.
106305
.
31.
Agrawal
,
V.
,
Gajrani
,
K. K.
,
Mote
,
R. G.
,
Barshilia
,
H. C.
, and
Joshi
,
S. S.
,
2022
, “
Wear Analysis and Tool Life Modeling in Micro Drilling of Inconel 718 Superalloy
,”
AMSE J. Tribol.
,
144
(
10
), p.
101706
.
32.
Bai
,
B.
,
Zhang
,
J.
,
Wu
,
X.
,
Zhu
,
G.
, and
Li
,
X.
,
2021
, “
Reliability Prediction-Based Improved Dynamic Weight Particle Swarm Optimization and Back Propagation Neural Network in Engineering Systems
,”
Expert Syst. Appl.
,
177
, p.
114952
.
33.
Cepowski
,
T.
, and
Chorab
,
P.
,
2021
, “
Determination of Design Formulas for Container Ships at the Preliminary Design Stage Using Artificial Neural Network and Multiple Nonlinear Regression
,”
Ocean Eng.
,
238
, p.
109727
.
34.
Ulas
,
M.
,
Altay
,
O.
,
Gurgenc
,
T.
, and
Özel
,
C.
,
2020
, “
A New Approach for Prediction of the Wear Loss of PTA Surface Coatings Using Artificial Neural Network and Basic, Kernel-Based, and Weighted Extreme Learning Machine
,”
Friction
,
8
(
6
), pp.
1102
1116
.
35.
Cheng
,
Y. N.
,
Jin
,
Y. B.
,
Gai
,
X. Y.
,
Guan
,
R.
, and
Lu
,
M. D.
,
2024
, “
Prediction of Tool Wear in Milling Process Based on BP Neural Network Optimized by Firefly Algorithm
,”
Proc. Inst. Mech. Eng.
,
238
(
5
), pp.
2387
2403
.
36.
Suawa
,
P. F.
,
Halbinger
,
A.
,
Jongmanns
,
M.
, and
Reichenbach
,
M.
,
2023
, “
Noise-Robust Machine Learning Models for Predictive Maintenance Applications
,”
IEEE Sens. J.
,
23
(
13
), pp.
15081
15092
.
37.
Song
,
S. H.
,
Xiong
,
X. Y.
,
Wu
,
X.
, and
Xue
,
Z. Z.
,
2021
, “
Modeling the SOFC by BP Neural Network Algorithm
,”
Int. J. Hydrogen Energy
,
46
(
38
), pp.
20065
20077
.
38.
Rubio
,
J. D. J.
,
2020
, “
Stability Analysis of the Modified Levenberg–Marquardt Algorithm for the Artificial Neural Network Training
,”
IEEE Trans. Neur. Netw. Learn.
,
32
(
8
), pp.
3510
3524
.
39.
Nti
,
I. K.
,
Nyarko-Boateng
,
O.
, and
Aning
,
J.
,
2021
, “
Performance of Machine Learning Algorithms With Different K Values in K-Fold CrossValidation
,”
Int. J. Inf. Technol.
,
13
(
6
), pp.
61
71
.
40.
Marcot
,
B. G.
, and
Hanea
,
A. M.
,
2021
, “
What is an Optimal Value of k in k-Fold Cross-Validation in Discrete Bayesian Network Analysis
,”
Comput. Stat.
,
36
(
3
), pp.
2009
2031
.
41.
Jung
,
K.
,
Bae
,
D. H.
,
Um
,
M. J.
,
Kim
,
S.
,
Jeon
,
S.
, and
Park
,
D.
,
2020
, “
Evaluation of Nitrate Load Estimations Using Neural Networks and Canonical Correlation Analysis With k-Fold Cross-Validation
,”
Sustainability
,
12
(
1
), p.
400
.
42.
Zhang
,
X.
, and
Liu
,
C. A.
,
2023
, “
Model Averaging Prediction by K-Fold Cross-Validation
,”
J. Econometrics
,
235
(
1
), pp.
280
301
.
43.
Ahmadi
,
A.
, and
Sadeghi
,
F.
,
2022
, “
A Three-Dimensional Finite Element Damage Mechanics Model to Simulate Fretting Wear of Hertzian Line and Circular Contacts in Partial Slip Regime
,”
AMSE J. Tribol.
,
144
(
5
), p.
051602
.
44.
Wang
,
D. G.
,
Song
,
D. Z.
,
Xu
,
W.
, and
Zhang
,
D. K.
,
2021
, “
Effect of Fretting Frequency on Tension-Torsion Fretting Corrosion Fatigue Behavior of Steel Wire
,”
Tribology
,
41
(
06
), pp.
964
973
.
45.
Zhang
,
Y.
,
Ming
,
H.
,
Tang
,
L.
,
Wang
,
J.
,
Qian
,
H.
, and
Han
,
E.-H.
,
2021
, “
Effect of the Frequency on Fretting Corrosion Behavior Between Alloy 690TT Tube and 405 Stainless Steel Plate in High Temperature Pressurized Water
,”
Tribol. Int.
,
164
, p.
107229
.
46.
Zhang
,
S.
,
Tian
,
C.
,
Liu
,
L.
, and
Tan
,
W.
,
2023
, “
Effect of Temperature on Simulated Flow-Induced Vibration Wear Behavior of Inconel 690 Alloy Mated With 304 SS in Pressurized Steam/Water Environment
,”
AMSE J. Tribol.
,
145
(
3
), p.
031707
.
47.
Wang
,
D.
,
Zhu
,
Z.
, and
Song
,
D.
,
2020
, “
Effects of Tensile Stress Ratio and Amplitude on Tension-Torsion Fretting-Corrosion-Fatigue Behaviors of Non-Perpendicularly Crossed Steel Wires
,”
Eng. Fail. Anal.
,
117
, p.
104839
.
48.
Pu
,
J.
,
Zhang
,
Y.
,
Zhang
,
X.
,
Yuan
,
X.
,
Ren
,
P.
, and
Jin
,
Z.
,
2021
, “
Mapping the Fretting Corrosion Behaviors of 6082 Aluminum Alloy in 3.5% NaCl Solution
,”
Wear
,
482–483
, p.
203975
.
49.
Eberlein
,
R.
,
Fukada
,
Y.
, and
Pasieka
,
L.
,
2021
, “Fatigue Life Analysis of Solid Elastomer-Like Polyurethanes,”
Fatigue Crack Growth in Rubber Materials: Experiments and Modelling
, Vol.
286
,
G.
Heinrich
,
R.
Kipscholl
, and
R.
Stoček
, eds.,
Springer Nature Switzerland AG
,
Springer Nature
, pp.
179
202
.
50.
Li
,
Y. H.
,
Tan
,
W.
,
Pei
,
W. J.
, and
Zhu
,
G. R.
,
2024
, “
The Effect of NaCl Concentration on Impact-Sliding Fretting Corrosion Behavior of Inconel 690TT Heat Transfer Tubes
,”
Anti-Corros. Methods Mater.
,
71
(
5
), pp.
464
481
.
51.
Oladokun
,
A.
,
Hall
,
R. M.
,
Neville
,
A.
, and
Bryant
,
M. G.
,
2019
, “
The Evolution of Subsurface Micro-Structure and Tribo-Chemical Processes in Cocrmo-ti6al4v Fretting-Corrosion Contacts: What Lies at and Below the Surface
,”
Wear
,
440-441
, p.
203095
.
52.
Wu
,
Y.
,
Wang
,
Z.
,
Chen
,
J.
,
Ma
,
Y.
,
Yan
,
Y.
, and
Qiao
,
L.
,
2023
, “
Effect of Frictional Frequency on the Subsurface Evolution of 316L Stainless Steel in Tribocorrosion and Its Influence on the Synergistic Effect Between Corrosion and Wear
,”
Tribol. Int.
,
178
, p.
108026
.
You do not currently have access to this content.