Abstract

Ni–P electroless coatings are widely utilized in industrial applications due to their exceptional hardness and wear resistance. To enhance the wear resistance of Ni–P coatings and reduce the wear of counterparts, a Ni–P-MSH composite coating was fabricated successfully through the incorporation of environmentally friendly magnesium silicate hydroxide (MSH) nanoparticles. This study demonstrates that MSH significantly influences the hardness, crystal structure, and chemical composition of the Ni–P coating, offering a novel approach to performance enhancement. Results show that the wear-rate of Ni–P-MSH1 composite coating decreases by about 82.9% compared with the Ni–P coating, with its wear resistance comparable to that of the heat-treated Ni–P-AT300 coating with high hardness. Furthermore, the steel ball sliding against the Ni–P-MSH1 coating exhibited a wear-rate three orders of magnitude lower than that observed with the Ni–P-AT300 coating, highlighting the excellent lubrication performance of the Ni–P-MSH1 coating. The outstanding wear resistance of Ni–P-MSH composite coatings can be attributed to the formation of a tribofilm composed of nickel oxide and phosphate on the surface of the coatings, and this discovery lays a foundation for the development of high-performance and eco-friendly coating materials.

References

1.
Wu
,
H.
,
Luo
,
Z.
,
Dong
,
Y.
,
Yao
,
L.
, and
Xu
,
Y.
,
2024
, “
Tribological Behavior and Surface Analysis of Ni–P/BP Coatings
,”
ASME J. Tribol.
,
146
(
5
), p.
051401
.
2.
Sudagar
,
J.
,
Lian
,
J.
, and
Sha
,
W.
,
2013
, “
Electroless Nickel, Alloy, Composite and Nano Coatings—A Critical Review
,”
J. Alloys Compd.
,
571
(
31
), pp.
183
204
.
3.
Saleh
,
B.
,
Abouel-Kasem
,
A.
, and
Ahmed
,
S. M.
,
2015
, “
Effect of Surface Properties Modification on Slurry Erosion-Corrosion Resistance of AISI 5117 Steel
,”
ASME J. Tribol.
,
137
(
3
), p.
031105
.
4.
Sahoo
,
P.
, and
Das
,
S. K.
,
2011
, “
Tribology of Electroless Nickel Coatings—A Review
,”
Mater. Des.
,
32
(
4
), pp.
1760
1775
.
5.
Dhakal
,
D. R.
,
Kshetri
,
Y. K.
,
Gyawali
,
G.
,
Kim
,
T. H.
,
Choi
,
J. H.
, and
Lee
,
S. W.
,
2021
, “
Understanding the Effect of Si3N4 Nanoparticles on Wear Resistance Behavior of Electroless Nickel-Phosphorus Coating Through Structural Investigation
,”
Appl. Surf. Sci.
,
541
, p.
148403
.
6.
Sadeghzadeh-Attar
,
A.
,
AyubiKia
,
G.
, and
Ehteshamzadeh
,
M.
,
2016
, “
Improvement in Tribological Behavior of Novel Sol-Enhanced Electroless Ni–P–SiO2 Nanocomposite Coatings
,”
Surf. Coat. Technol.
,
307
, pp.
837
848
.
7.
Zielińska
,
K.
,
Stankiewicz
,
A.
, and
Szczygieł
,
I.
,
2012
, “
Electroless Deposition of Ni–P-Nano-ZrO2 Composite Coatings in the Presence of Various Types of Surfactants
,”
J. Colloid Interface Sci.
,
377
(
1
), pp.
362
367
.
8.
Tamilarasan
,
T. R.
,
Rajendran
,
R.
,
Siva shankar
,
M.
,
Sanjith
,
U.
,
Rajagopal
,
G.
, and
Sudagar
,
J.
,
2016
, “
Wear and Scratch Behaviour of Electroless Ni–P-Nano-TiO2: Effect of Surfactants
,”
Wear
,
346–347
, pp.
148
157
.
9.
Pessoa
,
R. B.
,
Laurindo
,
C. A. H.
,
Meruvia
,
M. S.
,
Torres
,
R. D.
,
Mikowski
,
A.
,
Soares
,
M. E.
, and
Soares
,
P.
,
2021
, “
Mechanical, Tribological, and Corrosion Properties of Composite NiP–Al2O3 With Different Amount of Particles
,”
ASME J. Tribol.
,
143
(
11
), p.
111702
.
10.
Wu
,
Y. C.
,
Li
,
G. H.
, and
Zhang
,
L.
,
2000
, “
Wear Resistance of Electroless Deposited Ni–P and Ni–P/SiC Composite Coatings on Low Alloy Cast Iron
,”
Surf. Eng.
,
16
(
6
), pp.
506
510
.
11.
Dong
,
D.
,
Chen
,
X. H.
,
Xiao
,
W. T.
,
Yang
,
G. B.
, and
Zhang
,
P. Y.
,
2009
, “
Preparation and Properties of Electroless Ni–P–SiO2 Composite Coatings
,”
Appl. Surf. Sci.
,
255
(
15
), pp.
7051
7055
.
12.
Xu
,
Y.
,
Zheng
,
X.
,
Hu
,
X.
,
Yin
,
Y.
, and
Lei
,
T.
,
2014
, “
Preparation of the Electroless Ni–P and Ni–Cu–P Coatings on Engine Cylinder and Their Tribological Behaviors Under Bio-oil Lubricated Conditions
,”
Surf. Coat. Technol.
,
258
, pp.
790
796
.
13.
Mei
,
S.
,
Zhou
,
C.
,
Hu
,
Z.
,
Xiao
,
Z.
,
Zheng
,
Q.
, and
Chai
,
X.
,
2023
, “
Preparation of a Ni–P-NanoPTFE Composite Coating on the Surface of GCr15 Steel for Spinning Rings Via a Defoamer and Transition Layer and Its Wear and Corrosion Resistance
,”
Materials (Basel)
,
16
(
12
), p.
4427
.
14.
Czagány
,
M.
,
Baumli
,
P.
, and
Kaptay
,
G.
,
2017
, “
The Influence of the Phosphorous Content and Heat Treatment on the Nano-micro-structure, Thickness and Micro-hardness of Electroless Ni–P Coatings on Steel
,”
Appl. Surf. Sci.
,
423
, pp.
160
169
.
15.
Gao
,
R.
,
Liu
,
W. B.
,
Chang
,
Q. Y.
,
Zhang
,
H.
, and
Liu
,
Y.
,
2021
, “
Tribological Property of Biocarbon-Based Magnesium Silicate Hydroxide Nanocomposite as Lubricant Additive at Different Concentrations of Additive and Dispersant
,”
ASME J. Tribol.
,
143
(
7
), p.
071901
.
16.
Wang
,
B.
,
Chang
,
Q. Y.
,
Gao
,
K.
,
Fang
,
H. R.
,
Qing
,
T.
, and
Zhou
,
N. N.
,
2018
, “
The Synthesis of Magnesium Silicate Hydroxide With Different Morphologies and the Comparison of Their Tribological Properties
,”
Tribol. Int.
,
119
, pp.
672
679
.
17.
Sharifalhoseini
,
Z.
,
Entezari
,
M. H.
,
Davoodi
,
A.
, and
Shahidi
,
M.
,
2020
, “
Access to Nanocrystalline, Uniform, and Fine-Grained Ni–P Coating With Improved Anticorrosive Action Through the Growth of ZnO Nanostructures Before the Plating Process
,”
Corros. Sci.
,
172
, p.
108743
.
18.
Wang
,
B.
,
Gao
,
K.
,
Chang
,
Q. Y.
,
Berman
,
D.
, and
Tian
,
Y.
,
2021
, “
Magnesium Silicate Hydroxide–MoS2–Sb2O3 Coating Nanomaterials
,”
ACS Appl. Nano Mater.
,
4
(
7
), pp.
7097
7106
.
19.
Chang
,
Q.
,
Rudenko
,
P.
,
Miller
,
D. J.
,
Wen
,
J.
,
Berman
,
D.
,
Zhang
,
Y.
,
Arey
,
B.
,
Zhu
,
Z.
, and
Erdemir
,
A.
,
2017
, “
Operando Formation of an Ultra-Low Friction Boundary Film From Synthetic Magnesium Silicon Hydroxide Additive
,”
Tribol. Int.
,
110
, pp.
35
40
.
20.
Yan
,
Q.
,
Chang
,
Q.
,
Yang
,
H.
,
Hao
,
L.
, and
Gao
,
R.
,
2024
, “
Novel Anti-wear Performance of Nano Magnesium Silicate Hydroxide in Boundary Lubrication Under High Temperature
,”
ASME J. Tribol.
,
146
(
7
), p.
072102
.
21.
Güler
,
O.
,
Çelebi
,
M.
,
Karabacak
,
A. H.
, and
Çanakçı
,
A.
,
2023
, “
The Effect of Advanced Electrodeposited Ni–P–Cu Coatings Obtained With Scrap Cu Plates on the Tribological Performance of Al Powder Metallurgy Products
,”
Surf. Coat. Technol.
,
468
, p.
129750
.
22.
Wang
,
L. L.
,
Chen
,
H. J.
, and
Chen
,
Z. L.
,
2011
, “
Study on Post-Treatments for Electroless Ni–P Coating
,”
Surf. Eng.
,
27
(
1
), pp.
57
60
.
23.
Li
,
D.
,
Cui
,
X.
,
Wen
,
X.
,
Feng
,
L.
,
Hu
,
Y.
,
Jin
,
G.
,
Liu
,
E.
, and
Zheng
,
W.
,
2022
, “
Effect of CeO2 Nanoparticles Modified Graphene Oxide on Electroless Ni–P Coating for Mg–Li Alloys
,”
Appl. Surf. Sci.
,
593
, p.
153381
.
24.
Rahman
,
A.
, and
Jayaganthan
,
R.
,
2015
, “
Effect of PH Values on Nanostructured Ni–P Films
,”
Appl. Nanosci.
,
5
(
4
), pp.
493
498
.
25.
Li
,
H.
,
Li
,
H.
,
Dai
,
W. L.
,
Wang
,
W.
,
Fang
,
Z.
, and
Deng
,
J. F.
,
1999
, “
XPS Studies on Surface Electronic Characteristics of Ni–B and Ni–P Amorphous Alloy and Its Correlation to Their Catalytic Properties
,”
Appl. Surf. Sci.
,
152
(
1
), pp.
25
34
.
26.
Ma
,
H.
,
Li
,
J.
,
Chen
,
H.
,
Zuo
,
G.
,
Yu
,
Y.
,
Ren
,
T.
, and
Zhao
,
Y.
,
2009
, “
XPS and XANES Characteristics of Tribofilms and Thermal Films Generated by Two P- and/or S-Containing Additives in Water-Based Lubricant
,”
Tribol. Int.
,
42
(
6
), pp.
940
945
.
27.
Waghmare
,
A.
,
Rathore
,
R.
,
Pandey
,
A.
, and
Chandra
,
V.
,
2024
, “
Highly Efficient Photocatalytic Degradation of Methyl Orange Dye Under Solar Light Using Polyaniline@Iron Phosphate Nanocomposite
,”
Mater. Sci. Eng. B
,
302
, p.
117253
.
28.
Hao
,
X.
,
Fan
,
Y.
,
Deng
,
W.
, and
Jin
,
Z.
,
2024
, “
In Situ XPS Demonstrated Efficient Charge Transfer of Ohmic Junctions Based on Graphdiyne (g-CnH2n-2) Nanosheets Coupled With Porous Nanoflowers Ni5P4 for Efficient Photocatalytic H2 Evolution
,”
Carbon NY
,
218
, p.
118752
.
29.
Georgiza
,
E.
,
Novakovic
,
J.
, and
Vassiliou
,
P.
,
2013
, “
Characterization and Corrosion Resistance of Duplex Electroless Ni–P Composite Coatings on Magnesium Alloy
,”
Surf. Coat. Technol.
,
232
, pp.
432
439
.
30.
Hadipour
,
A.
,
Monirvaghefi
,
S. M.
, and
Bahrololoom
,
M. E.
,
2015
, “
Electroless Deposition of Graded Ni–P Coatings
,”
Surf. Eng.
,
31
(
6
), pp.
399
405
.
31.
Elsener
,
B.
,
Crobu
,
M.
,
Scorciapino
,
M. A.
, and
Rossi
,
A.
,
2008
, “
Electroless Deposited Ni–P Alloys: Corrosion Resistance Mechanism
,”
J. Appl. Electrochem.
,
38
(
7
), pp.
1053
1060
.
32.
Li
,
B.
,
Zhang
,
G.
,
Liu
,
D.
, and
Chen
,
J.
,
2022
, “
Selective Alteration Mechanisms of Sodium Tripolyphosphate Towards Serpentine: Implications for Flotation of Pyrite From Serpentine
,”
J. Mol. Liq.
,
368
, p.
120687
.
33.
Ma
,
C.
,
Wu
,
F.
,
Ning
,
Y.
,
Xia
,
F.
, and
Liu
,
Y.
,
2014
, “
Effect of Heat Treatment on Structures and Corrosion Characteristics of Electroless Ni–P-SiC Nanocomposite Coatings
,”
Ceram. Int.
,
40
(
7 Pt. A
), pp.
9279
9284
.
34.
Zhou
,
L.
,
Zhang
,
J.
,
Tian
,
Y.
,
Wang
,
J.
, and
He
,
D.
,
2024
, “
Comparison of the Relationship Between Hardness and Wear Resistance of Polycrystalline Diamond and Cubic Boron Nitride
,”
J. Am. Ceram. Soc.
,
107
(
8
), pp.
5412
5420
.
35.
Moore
,
M. A.
,
1974
, “
The Relationship Between the Abrasive Wear Resistance, Hardness and Microstructure of Ferritic Materials
,”
Wear
,
28
(
1
), pp.
59
68
.
36.
Ni
,
W.
,
Cheng
,
Y. T.
,
Lukitsch
,
M. J.
,
Weiner
,
A. M.
,
Lev
,
L. C.
, and
Grummon
,
D. S.
,
2004
, “
Effects of the Ratio of Hardness to Young’s Modulus on the Friction and Wear Behavior of Bilayer Coatings
,”
Appl. Phys. Lett.
,
85
(
18
), pp.
4028
4030
.
37.
Hu
,
Y.
,
Li
,
W.
,
Li
,
L.
,
Wu
,
J.
,
Sheng
,
S.
, and
Wang
,
H.
,
2023
, “
Electrodeposition of Ni–Mo–P Coatings in Choline Chloride-Ethylene Glycol Deep Eutectic Electrolyte for High Performance Electrocatalyst Toward Hydrogen Evolution Reaction
,”
Appl. Catal. A Gen.
,
662
, p.
119267
.
38.
Yu
,
H.
,
Wang
,
M.
, and
Wang
,
X.
,
2024
, “
Enhanced Electrocatalytic Hydrodechlorination of 2,4-Dichlorophenol Over Palladium Nanoparticles Loading on Dendrite-Like Ni–Cu–P Interlayer
,”
Mater. Res. Bull.
,
172
, p.
112655
.
39.
Peng
,
Y.
,
Xu
,
Y.
,
Geng
,
J.
,
Dearn
,
K. D.
, and
Hu
,
X.
,
2017
, “
Tribological Assessment of Coated Piston Ring-Cylinder Liner Contacts Under Bio-oil Lubricated Conditions
,”
Tribol. Int.
,
107
, pp.
283
293
.
40.
Mistry
,
K. K.
,
Morina
,
A.
,
Erdemir
,
A.
, and
Neville
,
A.
,
2013
, “
Tribological Performance of EP Lubricants With Phosphorus-Based Additives
,”
Tribol. Trans.
,
56
(
4
), pp.
645
651
.
41.
Vengudusamy
,
B.
,
Jablonka
,
K.
,
Grafl
,
A.
, and
Siegert
,
W.
,
2016
, “
Tribological Behaviour of Electroless NiP Coatings With an Extreme Pressure Additive: Synergistic or Antagonistic?
,”
Tribol. Lett.
,
62
(
2
), p.
28
.
You do not currently have access to this content.