Abstract

The relevance of the compliant contacts operated in elastohydrodynamic lubrication regime has increased during the last decades. Polymers and elastomers have been preferred because of their low-cost production or their tribological performance in many mechanical and bioengineering applications, where the metals originally dominated. Especially, in high-performance applications, such as polymer gears, the current subject of interest covers the transition between Piezoviscous-elastic and Isoviscous-elastic regimes of elastohydrodynamic lubrication. Here, it is necessary to precisely determine operating conditions and lubricant properties such as rheology whose contribution to film thickness formation may be influenced by attributes of individual lubrication regimes. The high-pressure viscosimeter and the optical tribometer were used, the former to establish the pressure–viscosity–temperature relationship of two reference lubricants, natural Squalane and synthetic tri(2-ethylhexyl) trimellitate, and the latter to determine the central and minimum film thickness in the circular contact between the PMMA disc and the steel ball using the optical chromatic interferometry method. Experimental results of film thickness demonstrated a significant deviation from the soft elastohydrodynamic lubrication (EHL) models, independently of the lubricant used, load, entrainment speed, and temperature because the pressure–viscosity–temperature response of lubricant was not included. Due to this, film thickness data were regressed, and new power coefficients of dimensionless parameter G¯ were derived. Outcomes confirmed the operation of the compliant circular contact in the transition region between the Piezoviscous-elastic and Isoviscous-elastic regimes with the minimum film thickness identified on the side lobes of the horseshoe shape.

References

1.
Gilbert
,
M.
,
2017
, “Chapter 1 - Plastics Materials: Introduction and Historical Development,”
Brydson’s Plastics Materials
, 8th ed.,
M.
Gilbert
, ed.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
1
18
.
2.
Dearn
,
K. D.
,
Hoskins
,
T. J.
,
Petrov
,
D. G.
,
Reynolds
,
S. C.
, and
Banks
,
R.
,
2013
, “
Applications of Dry Film Lubricants for Polymer Gears
,”
Wear
,
298–299
(
1
), pp.
99
108
.
3.
Alharbi
,
K. A. M.
,
2019
, “
Wear and Mechanical Contact Behavior of Polymer Gears
,”
ASME J. Tribol.
,
141
(
1
), p.
011101
.
4.
Lugt
,
P. M.
, and
Morales-Espejel
,
G. E.
,
2011
, “
A Review of Elasto-Hydrodynamic Lubrication Theory
,”
Tribol. Trans.
,
54
(
3
), pp.
470
496
.
5.
Johnson
,
K. L.
,
1970
, “
Regimes of Elastohydrodynamic Lubrication
,”
J. Mech. Eng. Sci.
,
12
(
1
), pp.
9
16
. (Vols 1-23)
6.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1978
, “
Elastohydrodynamic Lubrication of Elliptical Contacts for Materials of Low Elastic Modulus i—Fully Flooded Conjunction
,”
ASME J. Tribol.
,
100
(
2
), pp.
236
245
.
7.
Hooke
,
C. J.
, and
O’Donoghue
,
J. P.
,
1972
, “
Elastohydrodynamic Lubrication of Soft, Highly Deformed Contacts
,”
J. Mech. Eng. Sci.
,
14
(
1
), pp.
34
48
.
8.
Esfahanian
,
M.
, and
Hamrock
,
B. J.
,
1991
, “
Fluid-Film Lubrication Regimes Revisited
,”
Tribol. Trans.
,
34
(
4
), pp.
628
632
.
9.
Gold
,
P. W.
,
Schmidt
,
A.
,
Dicke
,
H.
,
Loos
,
J.
, and
Assmann
,
C.
,
2001
, “
Viscosity-Pressure-Temperature Behaviour of Mineral and Synthetic Oils
,”
J. Synth. Lubr.
,
18
(
1
), pp.
51
79
.
10.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Results
,”
ASME J. Lubr. Tech.
,
99
(
2
), pp.
264
275
.
11.
Dowson
,
D.
,
Dunn
,
J. F.
, and
Taylor
,
C. M.
,
1983
, “
The Piezo-Viscous Fluid, Rigid Solid Regime of Lubrication
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
197
(
1
), pp.
43
52
.
12.
Noutary
,
M.-P.
, and
Lubrecht
,
A. A.
,
2003
, “Starved Lubrication of Isoviscous Rigid Circular Contacts,”
Tribological Research and Design for Engineering Systems
, Vol.
41,
D.
Dowson
,
M.
Priest
,
G.
Dalmaz
, and
A B T—Tribology Series Lubrecht
, eds., :
Elsevier
,
New York
, pp.
713
718
13.
Dowson
,
D.
,
1967
, “
Paper 10: Elastohydrodynamics
,”
Proc. Inst. Mech. Eng., Conf. Proc.
,
182
(
1
), pp.
151
167
.
14.
Greenwood
,
J. A.
,
1972
, “
An Extension of the Grubin Theory of Elastohydrodynamic Lubrication
,”
J. Phys. D: Appl. Phys.
,
5
(
12
), pp.
2195
2211
.
15.
Hooke
,
C.
,
1977
, “
The Elastohydrodynamic Lubrication of Heavily Loaded Contacts
,”
J. Mech. Eng. Sci.
,
19
(
4
), pp.
149
156
.
16.
Jaffar
,
M. J.
,
1989
, “
Estimation of Minimum Thickness for Line Contacts in the Transition Region Between the Isoviscous—Elastic and the Piezoviscous-Elastic Lubrication Regimes
,”
Proc. Inst. Mech. Eng. C: Mech. Eng. Sci.
,
203
(
6
), pp.
379
386
.
17.
Myers
,
T. G.
,
Hall
,
R. W.
,
Savage
,
M. D.
, and
Gaskell
,
P. H.
,
1991
, “
The Transition Region of Elastohydrodynamic Lubrication
,”
Proc. R. Soc. Lond. A Math., Phys. Eng. Sci.
,
432
(
1886
), pp.
467
479
.
18.
Hooke
,
C. J.
,
1995
, “
The Elastohydrodynamic Lubrication of Elliptical Point Contacts Operating in the Isoviscous Region
,”
Proc. Inst. Mech. Eng. J J. Eng. Tribol.
,
209
(
4
), pp.
225
234
.
19.
Myant
,
C.
,
Fowell
,
M.
,
Spikes
,
H. A.
, and
Stokes
,
J. R.
,
2010
, “
An Investigation of Lubricant Film Thickness in Sliding Compliant Contacts
,”
Tribol. Trans.
,
53
(
5
), pp.
684
694
.
20.
Fowell
,
M. T.
,
Myant
,
C.
,
Spikes
,
H. A.
, and
Kadiric
,
A.
,
2014
, “
A Study of Lubricant Film Thickness in Compliant Contacts of Elastomeric Seal Materials Using a Laser Induced Fluorescence Technique
,”
Tribol. Int.
,
80
, pp.
76
89
.
21.
Marx
,
N.
,
Guegan
,
J.
, and
Spikes
,
H. A.
,
2016
, “
Elastohydrodynamic Film Thickness of Soft EHL Contacts Using Optical Interferometry
,”
Tribol. Int.
,
99
, pp.
267
277
.
22.
Gasni
,
D.
,
Wan Ibrahim
,
M. K.
, and
Dwyer-Joyce
,
R. S.
,
2011
, “
Measurements of Lubricant Film Thickness in the Iso-Viscous Elastohydrodynamic Regime
,”
Tribol. Int.
,
44
(
7–8
), pp.
933
944
.
23.
Barus
,
C.
,
1893
, “
Isothermals, Isopiestics and Isometrics Relative to Viscosity
,”
Am. J. Sci.
,
s3-45
(
266
), pp.
87 LP
96
.
24.
Chu
,
P. S. Y.
, and
Cameron
,
A.
,
1962
, “
Pressure Viscosity Characteristics of Lubricating Oils
,”
J. Inst. Petroleum
,
48
, pp.
147
155
.
25.
Murnaghan
,
F. D.
,
1944
, “
The Compressibility of Media Under Extreme Pressures
,”
Proc. Natl. Acad. Sci. U. S. A.
,
30
(
9
), pp.
244
247
.
26.
McEwen
,
E.
,
1952
, “
The Effect of Variation of Viscosity With Pressure on the Load-Carrying Capacity of the Oil Film Between Gear-Teeth
,”
J. Inst. Petroleum
,
38
(
344-345
), pp.
646
672
.
27.
Roelands
,
C. J. A.
,
Vlugter
,
J. C.
, and
Waterman
,
H. I.
,
1963
, “
The Viscosity-Temperature-Pressure Relationship of Lubricating Oils and Its Correlation With Chemical Constitution
,”
ASME J. Fluids Eng.
,
85
(
4
), pp.
601
607
.
28.
Roelands
,
C.
,
1966
, “
Correlational Aspects of the Viscosity–Temperature–Pressure Relationship of Lubricating Oils
,” Ph.D. Thesis, University of Technology, Delft, The Netherlands.
29.
Johnston
,
W. G.
,
1981
, “
A Method to Calculate the Pressure-Viscosity Coefficient From Bulk Properties of Lubricants
,”
ASLE Trans.
,
24
(
2
), pp.
232
238
.
30.
Jones
,
W. R.
,
Johnson
,
R. L.
,
Winer
,
W. O.
, and
Sanborn
,
D. M.
,
1975
, “
Pressure-Viscosity Measurements for Several Lubricants to 5.5 × 108 Newtons Per Square Meter (8 × 104 PSI) and 149 C (300 F)
,”
ASLE Trans.
,
18
(
4
), pp.
249
262
.
31.
Doolittle
,
A. K.
,
1951
, “
Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free-Space
,”
J. Appl. Phys.
,
22
(
12
), pp.
1471
1475
.
32.
Vergne
,
P.
, and
Berthe
,
D.
,
1987
, “
Paper X(i) Pressure Viscosity and Compressibility of Different Mineral Oils
,”
Tribol. Series
,
11
(
C
), pp.
309
315
.
33.
Bair
,
S.
,
2006
, “
Reference Liquids for Quantitative Elastohydrodynamics: Selection and Rheological Characterization
,”
Tribol. Lett.
,
22
(
2
), pp.
197
206
.
34.
Bair
,
S.
,
2016
, “
The Temperature and Pressure Dependence of Viscosity and Volume for Two Reference Liquids
,”
Lubr. Sci.
,
28
(
2
), pp.
81
95
.
35.
Bair
,
S.
,
2016
, “
Pressure–Viscosity Response in the Inlet Zone for Quantitative Elastohydrodynamics
,”
Tribol. Int.
,
97
, pp.
272
277
.
36.
Krupka
,
J.
,
Dockal
,
K.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2022
, “
Elastohydrodynamic Lubrication of Compliant Circular Contacts Near Glass-Transition Temperature
,”
Lubricants
,
10
(
7
), p.
155
.
37.
Bair
,
S.
,
2004
, “
A Routine High-Pressure Viscometer for Accurate Measurements to 1 GPa
,”
Tribol. Trans.
,
47
(
3
), pp.
356
360
.
38.
Hartl
,
M.
,
Krupka
,
I.
,
Poliscuk
,
R.
,
Liska
,
M.
,
Molimard
,
J.
,
Querry
,
M.
, and
Vergne
,
P.
,
2001
, “
Thin Film Colorimetric Interferometry
,”
Tribol. Trans.
,
44
(
2
), pp.
270
276
.
39.
Putignano
,
C.
, and
Dini
,
D.
,
2017
, “
Soft Matter Lubrication: Does Solid Viscoelasticity Matter?
,”
ACS Appl. Mater. Interfaces
,
9
(
48
), pp.
42287
42295
.
You do not currently have access to this content.