Abstract

The ISO 14242-1 standard for hip joint simulator wear testing specifies a set of test conditions for the simulation of normal level walking in optimal conditions. Since some of the established simulators, such as the 12-station HUT-4, are not ISO 14242-1 compliant, the present study was carried out to answer the following question. Does wear produced in ISO 14242-1 conditions differ from that obtained earlier with the simplified HUT-4 hip joint simulator for similar specimens in normal level walking, optimal conditions? The established HUT-4 hip joint simulator was made ISO compliant by an implementation of a number of modifications. One of the modifications was the design and construction of a novel servo-electric load actuator with a proven dynamic response. The other modifications were related to the Euler sequence of motions, acetabular abduction angle, enclosure of the lubricant chamber, and temperature control. A 5 million-cycle wear test with thin, large-diameter VEXLPE liners resulted in a wear rate close to that obtained earlier with the HUT-4. The burnished bearing surface in both tests was in agreement with clinical retrieval studies. It appeared that a more simple, inexpensive hip joint simulator can reproduce clinical wear mechanisms. However, the simulator must meet certain basic requirements. The most important of these is likely to be the correct type of multidirectional relative motion, for which biaxial motion is sufficient. It is emphasized that the present study was not intended to show a similarity in wear produced by the ISO 14242-1 and HUT-4 wear test systems.

References

1.
Kurtz
,
S. M.
,
2009
,
UHMWPE Biomaterials Handbook: Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices
,
Academic Press
,
Amsterdam, The Netherlands
.
2.
McKellop
,
H. A.
,
Campbell
,
P.
,
Park
,
S.-H.
,
Schmalzried
,
T. P.
,
Grigoris
,
P.
,
Amstutz
,
H. C.
, and
Sarmiento
,
A.
,
1995
, “
The Origin of Submicron Polyethylene Wear Debris in Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
311
, pp.
3
20
.
3.
Calonius
,
O.
, and
Saikko
,
V.
,
2003
, “
Force Track Analysis of Contemporary Hip Simulators
,”
J. Biomech.
,
36
(
11
), pp.
1719
1726
.
4.
ISO 14242-1:2014/Amd 1
,
2018
,
Implants for Surgery—Wear of Total Hip-Joint Prostheses—Part 1: Loading and Displacement Parameters for Wear-Testing Machines and Corresponding Environmental Conditions for Test
,
International Organization for Standardization
,
Geneva, Switzerland
.
5.
Saikko
,
V.
,
2005
, “
A 12-Station Anatomic Hip Joint Simulator
,”
Proc. Inst. Mech. Eng. H.
,
219
(
6
), pp.
437
448
.
6.
Saikko
,
V.
,
2019
, “
Wear and Friction of Thin, Large-Diameter Acetabular Liners Made From Highly Cross-Linked, Vitamin-E-Stabilized UHMWPE Against CoCr Femoral Heads
,”
Wear
,
432
, p.
202948
.
7.
Oral
,
E.
,
Greenbaum
,
E. S.
,
Malhi
,
A. S.
,
Harris
,
W. H.
, and
Muratoglu
,
O. K.
,
2005
, “
Characterization of Irradiated Blends of α-Tocopherol and UHMWPE
,”
Biomaterials
,
26
(
33
), pp.
6657
6663
.
8.
Bracco
,
P.
, and
Oral
,
E.
,
2011
, “
Vitamin E-Stabilized UHMWPE for Total Joint Implants: A Review
,”
Clin. Orthop. Relat. Res.
,
469
(
8
), pp.
2286
2293
.
9.
Grupp
,
T. M.
,
Holderied
,
M.
,
Mulliez
,
M. A.
,
Streller
,
R.
,
Jäger
,
M.
,
Blömer
,
W.
, and
Utzschneider
,
S.
,
2014
, “
Biotribology of a Vitamin E-Stabilized Polyethylene for Hip Arthroplasty—Influence of Artificial Ageing and Third-Body Particles on Wear
,”
Acta Biomater.
,
10
(
7
), pp.
3068
3078
.
10.
Scemama
,
C.
,
Anract
,
P.
,
Dumaine
,
V.
,
Babinet
,
A.
,
Courpied
,
J. P.
, and
Hamadouche
,
M.
,
2017
, “
Does Vitamin E-Blended Polyethylene Reduce Wear in Primary Total Hip Arthroplasty: A Blinded Randomised Clinical Trial
,”
Int. Orthop. (SICOT
),
41
(
6
), pp.
1113
1118
.
11.
Popoola
,
O. O.
,
Orozco Villasenor
,
D. A.
,
Fryman
,
J. C.
,
Mimnaugh
,
K.
, and
Rufner
,
A.
,
2018
, “
High Cycle in Vitro Hip Wear of and In Vivo Biological Response to Vitamin E Blended Highly Crosslinked Polyethylene
,”
Biotribology
,
16
, pp.
10
16
.
12.
Feskanin
,
H.
,
Barnes
,
B.
,
Loftus
,
E.
, and
Stroud
,
N.
,
2019
, “
Hip Wear Simulator Results of Vitamin E-Blended Highly Crosslinked Polyethylene
,”
Ortho. Proc.
,
101
(
S5
), pp.
106
106
.
13.
Kaku
,
N.
,
Tagomori
,
H.
,
Akase
,
H.
,
Tabata
,
T.
,
Kataoka
,
M.
, and
Tsumura
,
H.
,
2019
, “
Efficacy of Vitamin E for Mechanical Damage and Oxidation of Polyethylene Rim by Stem Neck Impingement
,”
Clin. Biomech.
,
68
, pp.
8
15
.
14.
Lambert
,
B.
,
Neut
,
D.
,
van der Veen
,
H. C.
, and
Bulstra
,
S. K.
,
2019
, “
Effects of Vitamin E Incorporation in Polyethylene on Oxidative Degradation, Wear Rates, Immune Response, and Infections in Total Joint Arthroplasty: A Review of the Current Literature
,”
Int. Ortho.
,
43
(
7
), pp.
1549
1557
.
15.
Viitala
,
R.
, and
Saikko
,
V.
,
2020
, “
Effect of Random Variation of Input and Various Daily Activities on Wear in a Hip Joint Simulator
,”
J. Biomech.
,
106
, p.
109831
.
16.
Saikko
,
V.
,
2020
, “
Effect of Inward-Outward Rotation on Hip Wear Simulation
,”
J. Biomech.
,
101
, p.
109638
.
17.
Saikko
,
V.
,
Morad
,
O.
, and
Viitala
,
R.
,
2021
, “
Effect of Type and Temperature of Serum Lubricant on VEXLPE Wear and Friction
,”
Wear
,
470
, p.
203613
.
18.
Saikko
,
V.
,
2019
, “
Effect of Wear, Acetabular Cup Inclination Angle, Load and Serum Degradation on the Friction of a Large Diameter Metal-on-Metal Hip Prosthesis
,”
Clin. Biomech.
,
63
, pp.
1
9
.
19.
ISO 14242-2
,
2016
,
Implants for Surgery—Wear of Total Hip-Joint Prostheses—Part 2: Methods of Measurement
,
International Organization for Standardization
,
Geneva, Switzerland
.
20.
Kaddick
,
C.
, and
Wimmer
,
M. A.
,
2001
, “
Hip Simulator Wear Testing According to the Newly Introduced Standard ISO 14242
,”
Proc. Inst. Mech. Eng. H.
,
215
(
5
), pp.
429
442
.
21.
Saikko
,
V.
,
2020
, “
Effect of Type of Contact, Counterface Surface Roughness, and Contact Area on the Wear and Friction of Extensively Cross-linked, Vitamin E Stabilized UHMWPE
,”
J. Biomed. Mater. Res. Part B Appl.
,
108
(
5
), pp.
1985
1992
.
22.
Reinisch
,
G.
,
Judmann
,
K. P.
,
Plitz
,
W.
, and
Schörg
,
J.
,
2001
, “
Ein Neuer, der ISO/FDIS 14242-1 Entsprechender Hüftsimulator: E-SIM—A New Hip Simulator, E-SIM, That Meets the Requirements of ISO/FDIS 14242-1
,”
Biomedizinische Technik
,
46
(
12
), pp.
362
365
.
23.
Matsoukas
,
G.
,
Willing
,
R.
, and
Kim
,
I. Y.
,
2009
, “
Total Hip Wear Assessment: A Comparison Between Computational and In Vitro Wear Assessment Techniques Using ISO 14242 Loading and Kinematics
,”
ASME J. Biomech. Eng.
,
131
(
4
), p.
041011
.
24.
Oliveira
,
A. L. L.
,
Lima
,
R. G.
,
Cueva
,
E. G.
, and
Queiroz
,
R. D.
,
2011
, “
Comparative Analysis of Surface Wear From Total Hip Prostheses Tested on a Mechanical Simulator According to Standards ISO 14242-1 and ISO 14242-3
,”
Wear
,
271
(
9
), pp.
2340
2345
.
25.
Okazaki
,
Y.
,
2014
, “
Effect of Head Size on Wear Properties of Metal-on-Metal Bearings of Hip Prostheses, and Comparison With Wear Properties of Metal-on-Polyethylene Bearings Using Hip Simulator
,”
J. Mech. Behav. Biomed. Mater.
,
31
, pp.
152
163
.
26.
Perron
,
M.
,
Malouin
,
F.
,
Moffet
,
H.
, and
McFadyen
,
B. J.
,
2000
, “
Three-Dimensional Gait Analysis in Women With a Total Hip Arthroplasty
,”
Clin. Biomech.
,
15
(
7
), pp.
504
515
.
27.
Besier
,
T. F.
,
Sturnieks
,
D. L.
,
Alderson
,
J. A.
, and
Lloyd
,
D. G.
,
2003
, “
Repeatability of Gait Data Using a Functional Hip Joint Centre and a Mean Helical Knee Axis
,”
J. Biomech.
,
36
(
8
), pp.
1159
1168
.
28.
Bennett
,
D.
,
Humphreys
,
L.
,
O’Brien
,
S.
,
Kelly
,
C.
,
Orr
,
J. F.
, and
Beverland
,
D. E.
,
2008
, “
Gait Kinematics of Age-Stratified Hip Replacement Patients—A Large Scale, Long-Term Follow-up Study
,”
Gait & Posture
,
28
(
2
), pp.
194
200
.
29.
Petersen
,
M. K.
,
Andersen
,
N. T.
,
Mogensen
,
P.
,
Voight
,
M.
, and
Søballe
,
K.
,
2011
, “
Gait Analysis After Total Hip Replacement With Hip Resurfacing Implant or Mallory-Head Exeter Prosthesis: A Randomised Controlled Trial
,”
Int. Orthop.
,
35
(
5
), pp.
667
674
.
30.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
31.
Lunn
,
D. E.
,
De Pieri
,
E.
,
Chapman
,
G. J.
,
Lund
,
M. E.
,
Redmond
,
A. C.
, and
Ferguson
,
S. J.
,
2020
, “
Current Preclinical Testing of New Hip Arthroplasty Technologies Does Not Reflect Real-World Loadings: Capturing Patient-Specific and Activity-Related Variation in Hip Contact Forces
,”
J. Arthroplasty
,
35
(
3
), pp.
877
885
.
32.
ISO 14242-3: 2009/Amd 1
,
2019
,
Implants for Surgery—Wear of Total Hip-Joint Prostheses—Part 3: Loading and Displacement Parameters for Orbital Bearing Type Wear Testing Machines and Corresponding Environmental Conditions for Test
,
International Organization for Standardization
,
Geneva, Switzerland
.
You do not currently have access to this content.