Abstract

This work investigates the effect of abnormal microstructure on rolling contact fatigue (RCF) damage of high-speed railway wheels under service and the formation mechanism of abnormal microstructure by optical microscopy, scanning electron microscopy, transmission electron microscopy, nano indentation and laser-induced break down spectroscopy. Results show that there are large amounts of upper bainite in the wheel tread, which destroyed the uniformity of the microstructures of the wheel matrix. The bainite is composed of ferrite with high density of dislocations and short bar-shaped cementite. The bainite exhibited higher hardness and elasticity but lower plasticity than the matrix microstructure. The incongruity of plastic deformation between upper bainite and matrix microstructures will lead to stress concentration at boundary of the microstructures, thus accelerating the RCF crack initiation and propagation. The formation of upper bainite is caused by carbon segregation. Segregation of carbon element will make the continuous cooling transformation (CCT) curve shift to the right significantly, thus increasing the probability of bainite transformation in segregation zone at higher cooling rate. Therefore, large amounts of upper bainite were formed at wheel tread.

References

1.
Zhang
,
G. Z.
, and
Ren
,
R. M.
,
2019
, “
Study on Typical Failure Forms and Causes of High-Speed Railway Wheels
,”
Eng. Fail. Anal.
,
105
, pp.
1287
1295
.
2.
Liu
,
C. P.
,
Liu
,
P. T.
,
Pan
,
J. Z.
,
Chen
,
C. H.
, and
Ren
,
R. M.
,
2020
, “
Effect of Pre-Wear on the Rolling Contact Fatigue Property of D2 Wheel Steel
,”
Wear
,
442–443
, p.
203154
.
3.
Huang
,
W. L.
,
Cao
,
X.
,
Wen
,
Z. F.
,
Wang
,
W. J.
,
Liu
,
Q. Y.
,
Zhu
,
M. H.
, and
Jin
,
X. S.
,
2016
, “
A Subscale Experimental Investigation on the Influence of Sanding on Adhesion and Rolling Contact Fatigue of Wheel/Rail Under Water Condition
,”
ASME J. Tribol.
,
139
(
1
), p.
011401
.
4.
Xie
,
T. X.
,
Zhou
,
L.
,
Ding
,
H. H.
,
Zhu
,
Y.
,
Yang
,
W. B.
,
Xiao
,
Q.
,
Wang
,
W. J.
,
Guo
,
J.
, and
Liu
,
Q. Y.
,
2021
, “
Investigation on the Rolling Contact Fatigue Behaviors of Different Laser Cladding Materials on the Damaged Rail
,”
Tribol. Int.
,
143
(
5
), p.
051108
.
5.
Ueda
,
M.
, and
Matsuda
,
K.
,
2019
, “
Effects of Carbon Content and Hardness on Rolling Contact Fatigue Resistance in Heavily Loaded Pearlitic Rail Steels
,”
Wear
,
444–445
, p.
203120
.
6.
Li
,
G.
,
Hong
,
Z. Y.
, and
Yan
,
Q. Z.
,
2015
, “
The Influence of Microstructure on the Rolling Contact Fatigue of Steel for High-Speed-Train Wheel
,”
Wear
,
342–343
, pp.
349
355
.
7.
Liu
,
C. P.
,
Pan
,
J. Z.
,
Liu
,
P. T.
,
Ren
,
R. M.
, and
Zhao
,
X. J.
,
2020
, “
Influence of Original Microstructure on Rolling Contact Fatigue Property of D2 Wheel Steel
,”
Wear
,
456–457
, p.
203380
.
8.
Liu
,
Y. F.
,
Jiang
,
T.
,
Zhao
,
X.
,
Wen
,
Z. F.
, and
Jin
,
X. S.
,
2020
, “
Effects of Axle Load Transfer on Wheel Rolling Contact Fatigue of High-Power AC Locomotives With Oblique Traction Rods
,”
Int. J. Fatigue
,
13
, p.
105748
.
9.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
10.
Golmohammadi
,
Z.
,
Sadeghi
,
F.
,
Walvekar
,
A.
,
Saei
,
M.
,
Mistry
,
K. K.
, and
Kang
,
Y. S.
,
2017
, “
Experimental and Analytical Investigation of Effects of Refurbishing on Rolling Contact Fatigue
,”
Wear
,
392–393
(
15
), pp.
190
201
.
11.
Paulson
,
N. R.
,
Golmohammadi
,
Z.
,
Walvekar
,
A. A.
,
Sadeghi
,
F.
, and
Mistry
,
K.
,
2017
, “
Rolling Contact Fatigue in Refurbished Case Carburized Bearings
,”
Tribol. Int.
,
15
, pp.
348
364
.
12.
Cannon
,
D. F.
, and
Pradier
,
H.
,
1996
, “
Rail Rolling Contact Fatigue Research by the European Rail Research Institute
,”
Wear
,
191
(
1–2
), pp.
1
13
.
13.
Ekberg
,
A.
, and
Kabo
,
E.
,
2005
, “
Fatigue of Railway Wheels and Rails Under Rolling Contact and Thermal Loading—An Overview
,”
Wear
,
258
(
7–8
), pp.
1288
1300
.
14.
Ringsberg
,
J. W.
,
2001
, “
Life Prediction of Rolling Contact Fatigue Crack Initiation
,”
Int. J. Fatigue
,
23
(
7
), pp.
575
586
.
15.
Bold
,
P. E.
,
Brown
,
M. W.
, and
Allen
,
R. J.
,
1991
, “
Shear Mode Crack Growth and Rolling Contact Fatigue
,”
Wear
,
144
(
1–2
), pp.
307
317
.
16.
Cong
,
T.
,
Han
,
J.
,
Hong
,
Y.
,
Domblesky
,
J. P.
, and
Liu
,
X. L.
,
2019
, “
Shattered Rim and Shelling of High-Speed Railway Wheels in the Very-High-Cycle Fatigue Regime Under Rolling Contact Loading
,”
Eng. Fail. Anal
,
97
, pp.
556
567
.
17.
Li
,
X.
,
Wen
,
Z. F.
, and
Jin
,
X. S.
,
2011
, “
Investigation Into Wheel Wear and Fatigue of Heavy-Haul Railways
,”
J. China Railw. Soc.
,
33
, pp.
28
34
.
18.
He
,
C. G.
,
Zhou
,
G. Y.
,
Wang
,
J.
,
Weng
,
G.
,
Wang
,
W. J.
, and
Liu
,
Q. Y.
,
2014
, “
Effect of Curve Radius of Rail on Rolling Contact Fatigue Properties of Wheel Steel
,”
Tribol.
,
34
(
3
), pp.
256
261
.
19.
Guang
,
R.
,
Zhang
,
W. H.
, and
Chi
,
M. R.
,
2009
, “
Study on Curve Negotiation Performance of Heavy-Haul Train
,”
J. Chin. Rail. Soc.
,
31
(
4
), pp.
98
103
.
20.
Xiao
,
Q.
,
Fang
,
J.
, and
Wang
,
L.
,
2016
, “
Effect of Friction Coefficient on Instant Rolling Contact Fatigue of High Speed Train Wheels
,”
China Railw. Sci.
,
37
, pp.
68
74
.
21.
Feng
,
R.
,
Li
,
S. L.
,
Zhu
,
X. D.
, and
Ao
,
Q.
,
2015
, “
Microstructural Characterization and Formation Mechanism of Abnormal Segregation Band of hot Rolled Ferrite/Pearlite Steel
,”
J. Alloy. Compd.
,
646
, pp.
787
793
.
22.
EN13262:2004+A2:2011
,
2011
, “
Railway Applications-Wheelsets and Bogies-Wheels-Product Requirements
,”
European Standard
.
23.
Zhang
,
B.
, and
Fu
,
X. Q.
,
2001
, “
Type and Formation Mechanism of Railway Wheel and Tire Tread Spall
,”
China Railw. Sci.
,
22
, pp.
73
78
.
24.
Pan
,
R.
,
Chen
,
C. H.
, and
Ren
,
R. M.
,
2016
,
China, CN 105242075 A[P]-01-13
.
25.
Yao
,
S. C.
,
Zhang
,
L. F.
,
Zhu
,
Y. M.
,
Wu
,
J. Y.
,
Lu
,
Z. M.
, and
Lu
,
J. D.
,
2020
, “
Evaluation of Heavy Metal Element Detection in Municipal Solid Waste Incineration Fly Ash Based on LIBS Sensor
,”
Waste Manage.
,
102
, pp.
492
498
.
26.
Liu
,
J.
,
Jia
,
Y. H.
,
Zhang
,
Y.
, and
Sun
,
N.
,
2015
, “
Determination of the Insoluble Aluminum Content in Steel Samples by Using Laser-Induced Breakdown Spectroscopy
,”
Plasma Sci. Technol.
,
17
(
8
), pp.
644
648
.
27.
Chen
,
H.
,
Zhang
,
C.
,
Liu
,
W. B.
,
Li
,
Q. H.
,
Chen
,
H.
,
Yang
,
Z. G.
, and
Weng
,
Y. Q.
,
2016
, “
Microstructure Evolution of a Hypereutectoid Pearlite Steel Under Rolling-Sliding Contact Loading
,”
Mater. Sci. Eng. A.
,
665
, pp.
50
59
.
28.
Franklin
,
F. J.
, and
Kapoor
,
A.
,
2007
, “
Modeling Wear and Crack Initiation in Rails
,”
Proc. Inst. Mech. Eng. F: J. Railw.
,
221
(
1
), pp.
23
33
.
29.
Bhadeshia
,
H. K. D. H.
,
2015
,
Bainite in Steels
, 3rd ed.,
IOM Communications Ltd
,
London
.
30.
Kráčalík
,
M. M.
,
Trummer
,
G.
, and
Daves
,
W.
,
2016
, “
Application of 2D Finite Element Analysis to Compare Cracking Behavior in Twin-Disc Tests and Full Scale Wheel/Rail Experiments
,”
Wear
,
346
, pp.
140
147
.
31.
Hamada
,
S.
,
Sasaki
,
D.
,
Ueda
,
M.
, and
Noguchi
,
H.
,
2011
, “
Fatigue Limit Evaluation Considering Crack Initiation for Lamellar Pearlitic Steel
,”
Procedia Eng.
,
10
, pp.
1467
1472
.
32.
Guan
,
M. F.
, and
Hao
,
Y.
,
2013
, “
Fatigue Crack Growth Behaviors in Hot Rolled Low Carbon Steels: A Comparison Between Ferrite-Pearlite and Ferrite-Bainite Microstructures
,”
Mater. Sci. Eng. A.
,
559
, pp.
875
881
.
33.
ISO14577–1
,
2002
,
Metallic Materials-Instrumented Indentation Test for Hardness and Materials Parameters
,
International Organization for Standardization
,
Geneva
.
34.
Gao
,
B.
,
Tan
,
Z. L.
,
Liu
,
Z. N.
,
Gao
,
G. H.
,
Zhang
,
M.
,
Zhang
,
G. Z.
, and
Bai
,
B. Z.
,
2019
, “
Influence of Non-Uniform Microstructure on Rolling Contact Fatigue Behavior of High-Speed Wheel Steels
,”
Eng. Failure Anal.
,
100
, pp.
485
491
.
35.
Rychlewski
,
J.
,
1984
, “
On Hooke's law
,”
J. Appl. Math. Mech.
,
48
(
3
), pp.
303
314
.
36.
Geng
,
X. X.
,
Wang
,
H.
,
Xue
,
W. H.
,
Xiang
,
S.
,
Huang
,
H. L.
,
Meng
,
L.
, and
Ma
,
G.
,
2020
, “
Modeling of CCT Diagrams for Tool Steels Using Different Machine Learning Techniques
,”
Comp. Mater. Sci.
,
171
, p.
109235
.
37.
Caballero
,
F. G.
,
Miller
,
M. K.
,
Babu
,
S. S.
, and
Garcia-Mateo
,
C.
,
2007
, “
Atomic Scale Observations of Bainite Transformation in a High Carbon High Silicon Steel
,”
Acta. Mater.
,
55
(
1
), pp.
381
390
.
38.
Suresh
,
S.
,
1991
,
Fatigue of Materials
,
Cambridge University Press
,
New York
.
39.
Zhang
,
J.
,
Di
,
H.
,
Deng
,
Y.
, and
Misra
,
R. D. K.
,
2015
, “
Effect of Martensite Morphology and Volume Fraction on Strain Hardening and Fracture Behavior of Martensite-Ferrite Dual Phase Steel
,”
Mater. Sci. Eng. A.
,
627
, pp.
230
240
.
40.
Avramovic-Cingara
,
G.
,
Ososkova
,
Y.
,
Jain
,
M. K.
, and
Wilkinson
,
D. S.
,
2009
, “
Effect of Martensite Distribution on Damage Behaviour in DP600 Dual Phase Steels
,”
Mater. Sci. Eng. A.
,
516
(
1–2
), pp.
7
16
.
41.
Steinbrunner
,
D. L.
,
Matlock
,
D. K.
, and
Krauss
,
G.
,
1988
, “
Void Formation During Tensile Testing of Dual Phase Steels
,”
Metall. Trans. A.
,
19
(
3
), pp.
579
589
.
42.
Dakshinamurthy
,
M.
, and
Ma
,
A.
,
2018
, “
Crack Propagation in TRIP Assisted Steels Modeled by Crystal Plasticity and Cohesive Zone Method
,”
Theor. Appl. Fract. Mech.
,
96
, pp.
545
555
.
43.
Fihser
,
R. M.
,
Speich
,
G. R.
,
Cuddy
,
L. H.
, and
Hu
,
H.
,
1976
,
Physical Chemistry in Metallurgy
,
U.S. Steel Research Lab.
,
Monroeville, Pa
,
463
488
.
44.
Vannier
,
I.
,
Combeau
,
H.
, and
Lesoult
,
G.
,
1993
, “
Numerical Model for Prediction of the Final Segregation Pattern of Bearing Steel Ingots
,”
Mater. Sci. Eng. A.
,
173
(
1–2
), pp.
317
321
.
You do not currently have access to this content.