Abstract

In order to characterize the resistance to surface pitting of gears subjected to contact fatigue cycles, test campaigns have been carried out on toothed rings in through hardened wrought steel 42CrMo4, meshing a case-hardened 17CrNiMo6 pinion. It was observed that due to the operating conditions, low speed, and grease lubrication, significant strain hardening developed on the involute tooth flank surface and subsurface. This resulted in enhanced material properties against pitting and consequently much higher allowable stress levels than those given by the ISO 6336 series of standard. The 42CrMo4 load capacity was increased by 38% at surface pressure (+90% in torque) compared to the expected results from the ISO 6336. Similar tests carried out on a through hardened wrought steel 30CrNiMo8 gears lead to results of the same order of magnitude. The purpose of this study is to develop a chain of numerical models and methods fed by material tests, in order to improve the accuracy of the estimation of the load capacity of open gear pair with hybrid material (surface case-hardened pinion against through hardened wrought steel). This new approach shows, explains, and predicts the increase in the capacity to withstand surface pressure by comparing present results with rolling contact fatigue lifetimes obtained during tests on several open gears submitted to different mission profiles. This study made it possible to reproduce how and under what conditions the work hardening during running-in reaches required depth resulting in a beneficial effect on the resistance to pitting.

References

1.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
2.
Nélias
,
D.
,
Dumont
,
M.
,
Champiot
,
F.
,
Vincent
,
A.
,
Girodin
,
D.
,
Fougeres
,
R.
, and
Flamand
,
L.
,
1999
, “
Role of Inclusions, Surface Roughness and Operating Conditions on Rolling Contact Fatigue
,”
ASME J. Tribol.
,
121
(
2
), pp.
240
251
.
3.
Tallian
,
T.
,
1992
, “
Simplified Contact Fatigue Life Prediction Model—Part Ii: New Model
,”
ASME J. Tribol.
,
114
(
2
), pp.
214
220
.
4.
Tallian
,
T. E.
,
1992
, “
The Failure Atlas for Hertz Contact Machine Elements
,”
Mech. Eng.
,
114
(
3
), p.
66
.
5.
Guler
,
M.
,
Alinia
,
Y.
, and
Adibnazari
,
S.
,
2012
, “
On the Rolling Contact Problem of Two Elastic Solids With Graded Coatings
,”
Int. J. Mech. Sci.
,
64
(
1
), pp.
62
81
.
6.
Harris
,
T.
,
Skiller
,
J.
, and
Spitzer
,
R. F.
,
1992
, “
On the Fatigue Life of M50 Nil Rolling Bearings
,”
Tribol. Trans.
,
35
(
4
), pp.
731
737
.
7.
Ioannides
,
E.
, and
Harris
,
T.
,
1985
, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
,
107
(
3
), pp.
367
377
.
8.
Lundberg
,
G.
, and
Palmgren
,
A.
,
1949
, “
Dynamic Capacity of Rolling Bearings
,”
ASME J. Appl. Mech.
,
16
(
2
), pp.
165
172
.
9.
Popescu
,
G.
,
Gabelli
,
A.
,
Espejel
,
G.
, and
Wemekamp
,
B.
,
2007
, “Micro-plastic Material Model and Residual Fields in Rolling Contacts,”
Bearing Steel Technology—Advances and State of the Art in Bearing Steel Quality Assurance: 7th Volume
,
ASTM International
.
10.
Liu
,
C. R.
, and
Choi
,
Y.
,
2008
, “
Rolling Contact Fatigue Life Model Incorporating Residual Stress Scatter
,”
Int. J. Mech. Sci.
,
50
(
12
), pp.
1572
1577
.
11.
Liu
,
C. R.
, and
Choi
,
Y.
,
2008
, “
A New Methodology for Predicting Crack Initiation Life for Rolling Contact Fatigue Based on Dislocation and Crack Propagation
,”
Int. J. Mech. Sci.
,
50
(
2
), pp.
117
123
.
12.
Ghosh
,
A.
,
Paulson
,
N.
, and
Sadeghi
,
F.
,
2015
, “
A Fracture Mechanics Approach to Simulate Sub-surface Initiated Fretting Wear
,”
Int. J. Solids Struct.
,
58
, pp.
335
352
.
13.
Bogdanski
,
S.
,
Olzak
,
M.
, and
Stupnicki
,
J.
,
1996
, “
Numerical Stress Analysis of Rail Rolling Contact Fatigue Cracks
,”
Wear
,
191
(
1
), pp.
14
24
.
14.
Liu
,
Y.
,
Liu
,
L.
, and
Mahadevan
,
S.
,
2007
, “
Analysis of Subsurface Crack Propagation Under Rolling Contact Loading in Railroad Wheels Using FEM
,”
Eng. Fract. Mech.
,
74
(
17
), pp.
2659
2674
.
15.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1999
, “
A Model for Rolling Contact Failure
,”
Wear
,
224
(
1
), pp.
38
49
.
16.
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
Explicit Finite Element Modeling of Subsurface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
43
(
9
), pp.
1693
1702
.
17.
Vo
,
K.
,
Tieu
,
A. K.
,
Zhu
,
H.
, and
Kosasih
,
P. B.
,
2014
, “
A 3d Dynamic Model to Investigate Wheel–Rail Contact Under High and Low Adhesion
,”
Int. J. Mech. Sci.
,
85
, pp.
63
75
.
18.
Van
,
K. D.
,
Cailletaud
,
G.
,
Flavenot
,
J.
,
Le Douaron
,
A.
, and
Lieurade
,
H.
,
2013
, “
Criterion for High-Cycle Fatigue Failure Under Multiaxial Loading
,” ICBMFF2.
19.
Sines
,
G.
, and
Ohgi
,
G.
,
1981
, “
Fatigue Criteria Under Combined Stresses or Strains
,”
ASME J. Eng. Mater. Technol.
,
103
(
2
), pp.
82
90
.
20.
Ekberg
,
A.
,
2000
,
Rolling Contact Fatigue of Railway Wheels
,
Chalmers University of Technology
,
Goteborg
.
21.
Hofmann
,
F.
,
Bertolino
,
G.
,
Constantinescu
,
A.
, and
Ferjani
,
M.
,
2009
, “
Numerical Exploration of the Dang Van High Cycle Fatigue Criterion: Application to Gradient Effects
,”
J. Mech. Mater. Struct.
,
4
(
2
), pp.
293
308
.
22.
Gorla
,
C.
,
Conrado
,
E.
,
Rosa
,
F.
, and
Concli
,
F.
,
2018
, “
Contact and Bending Fatigue Behaviour of Austempered Ductile Iron Gears
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
232
(
6
), pp.
998
1008
.
23.
Concli
,
F.
,
Fraccaroli
,
L.
, and
Maccioni
,
L.
,
2021
, “
Gear Root Bending Strength: A New Multiaxial Approach to Translate the Results of Single Tooth Bending Fatigue Tests to Meshing Gears
,”
Metals
,
11
(
6
), p.
863
.
24.
Concli
,
F.
, and
Kolios
,
A.
,
2021
, “
Preliminary Evaluation of the Influence of Surface and Tooth Root Damage on the Stress and Strain State of a Planetary Gearbox: An Innovative Hybrid Numerical–Analytical Approach for Further Development of Structural Health Monitoring Models
,”
Computation
,
9
(
3
), p.
38
.
25.
Ghribi
,
D.
, and
Octrue
,
M.
,
2014
, “
Some Theoretical and Simulation Results on the Study of the Tooth Flank Breakage in Cylindrical Gears
,” International Gear Conference, pp.
26
28
.
26.
Octrue
,
M.
,
Nicolle
,
A.
,
Genevier
,
R.
, and
Lefebvre
,
C.
,
2015
, “
A New Experimental Approach to Test Open Gears for Winch Drums
,”
Procedia Eng.
,
133
, pp.
192
201
.
27.
Michel, Dr.
,
O.
,
Antoine
,
N.
, and
Remy
,
G.
,
2016
, “
Contact Fatigue Characterization of Through-Hardened Steel for Low-Speed Applications Like Hoisting
,” p.
12
.
28.
Concli
,
F.
,
2018
, “
Austempered Ductile Iron (ADI) for Gears: Contact and Bending Fatigue Behavior
,”
Procedia Struct. Integrity
,
8
, pp.
14
23
.
29.
Ponter
,
A. R.
,
Chen
,
H.
,
Ciavarella
,
M.
, and
Specchia
,
G.
,
2006
, “
Shakedown Analyses for Rolling and Sliding Contact Problems
,”
Int. J. Solids Struct.
,
43
(
14
), pp.
4201
4219
.
30.
Pun
,
C. L.
,
Kan
,
Q.
,
Mutton
,
P. J.
,
Kang
,
G.
, and
Yan
,
W.
,
2015
, “
An Efficient Computational Approach to Evaluate the Ratcheting Performance of Rail Steels Under Cyclic Rolling Contact in Service
,”
Int. J. Mech. Sci.
,
101
, pp.
214
226
.
31.
Armstrong
,
P. J.
, and
Frederick
,
C.
,
1966
,
A Mathematical Representation of the Multiaxial Bauschinger Effect
, Vol. 731,
Central Electricity Generating Board [and] Berkeley Nuclear Laboratories
.
32.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
,
1994
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge
.
33.
Lesne
,
P.-M.
, and
Savalle
,
S.
,
1989
, “
An Efficient Cycles Jump Technique for Viscoplastic Structure Calculations Involving Large Number of Cycles
,” ONERA, TP No. 1989-138, p.
13
.
34.
Zarka
,
J.
, and
Casier
,
J.
,
1979
, “
Cyclic Loading on an Elastoplastic Structure-Practical Rules
,”
Mech. Today
,
6
, pp.
93
198
.
35.
Brunel
,
J.
,
Charkaluk
,
E.
,
Dufrenoy
,
P.
, and
Demilly
,
F.
,
2010
, “
Rolling Contact Fatigue of Railways Wheels: Influence of Steel Grade and Sliding Conditions
,”
Procedia Eng.
,
2
(
1
), pp.
2161
2169
.
36.
Ringsberg
,
J. W.
,
2000
, “
Cyclic Ratchetting and Failure of a Pearlitic Rail Steel
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
(
9
), pp.
747
758
.
37.
Cetim
, Comportement en fatigue des matériaux métalliques, généralités, collection fatigue.
38.
Dang
,
V. K.
,
1971
, “
Sur la résistance à la fatigue des métaux
,” Ph.D. thesis,
Université de Paris VI
.
39.
Van
,
K. D.
, and
Griveau
,
B.
,
1982
, “
On a New Multiaxial Fatigue Criterion: Theory and Application, Biaxial and Multiaxial Fatigue
,”
EGF3 Lond. Mech. Eng. Publ.
, pp.
479
496
.
40.
Thévenet
,
D.
,
Ghanameh
,
M. F.
, and
Zeghloul
,
A.
,
2013
, “
Contraintes structurales et dimensionnement en fatigue de jonctions tubulaires soudées
,”
Mech. Ind.
,
14
(
3
), pp.
207
217
.
41.
Bhattacharyya
,
A.
,
Londhe
,
N.
,
Arakere
,
N.
, and
Subhash
,
G.
,
2017
, “
A New Approach Towards Life Prediction of Case Hardened Bearing Steels Subjected to Rolling Contact Fatigue
,”
Mater. Perform. Charact.
,
6
(
4
), pp.
656
677
.
42.
Londhe
,
N. D.
,
Arakere
,
N. K.
, and
Subhash
,
G.
,
2019
, “
Effect of Plasticity on the Dynamic Capacity of Modern Bearing Steels
,”
Tribol. Int.
,
133
, pp.
160
171
.
43.
Amuzuga
,
K.
,
2016
, “
Damage Mechanism Related to Plasticity Around Heterogeneous Inclusions Under Rolling Contact Loading in Hybrid Bearings Ceramic/steel
,” Ph.D. thesis,
INSA
,
Lyon, France
.
You do not currently have access to this content.