This paper presents a numerical study for nonlinear rotordynamic response with bifurcations of tilting pad journal bearings when pad–pivot friction forces are taken into account. A Stribeck friction model is employed to determine the friction coefficient for the contacts between the pads and the spherical-type pivots. The boundary/mixed/hydrodynamic friction mode is determined for each pad surface based on the instantaneous angular motion of the pads. A Jeffcott type rotor supported on 5-pad tilting pad journal bearings is used for the structural model, and finite element fluid film models are utilized to calculate the reaction forces and moments on the pads. The simulation results show that pad–pivot friction plays an important role in determining the stability of the rotor system. For the autonomous condition, the friction induces a Hopf bifurcation and generates limit cycles at high rotor spin speed (>14 krpm), which were originally stable equilibrium states with a no friction condition. For the nonautonomous condition, the 1× synchronous response becomes subsynchronous/quasiperiodic responses in the high-speed range (>14 krpm) with the appearances of Neimark-Sacker bifurcations. It is shown that the outbreak points and corresponding response types are highly dependent on the state of disk imbalance. A comparison of the linear and nonlinear models clearly illustrates the importance of retaining nonlinear forces to determine potential deleterious vibration.

References

1.
Fillon
,
M.
,
Bligoud
,
J. C.
, and
Frêne
,
J.
,
1992
, “
Experimental Study of Tilting-Pad Journal Bearings—Comparison With Theoretical Thermoelastohydrodynamic Results
,”
ASME J. Tribol.
,
114
(
3
), pp.
579
587
.
2.
Suh
,
J.
, and
Palazzolo
,
A. B.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part I: Theoretical Modeling
,”
ASME J. Tribol.
,
137
(
4
), p.
041703
.
3.
Suh
,
J.
, and
Palazzolo
,
A. B.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part II: Parametric Studies
,”
ASME J. Tribol.
,
137
(
4
), p.
041704
.
4.
Kocur
,
J. A.
,
Nicholas
,
J. C.
, and
Lee
,
C. C.
,
2007
, “
Surveying Tilting Pad Journal Bearing and Gas-Labyrinth Seal Coefficients and Their Effect on Rotor Stability
,”
Proceedings of the 36th Turbomachinery Symposium, Texas A&M University Turbomachinery Laboratories.
,
College Station, TX
,
Sept. 10–13
, pp.
1
10
.
5.
Wygant
,
K. D.
,
Flack
,
R. D.
, and
Barrett
,
L. E.
,
1999
, “
Influence of Pad Pivot Friction on Tilting Pad Journal Bearing Measurement—Part I: Static Operating Conditions
,”
Tribol. Trans.
,
42
(
1
), pp.
210
215
.
6.
Wygant
,
K. D.
,
Flack
,
R. D.
, and
Barrett
,
L. E.
,
1999
, “
Influence of Pad Pivot Friction on Tilting Pad Journal Bearing Measurement—Part II: Dynamic Coefficients
,”
Tribol. Trans.
,
42
(
1
), pp.
250
256
.
7.
Pettinato
,
B. C.
, and
De Choudhury
,
P.
,
1999
, “
Test Results of Key and Spherical Pivot Five-Shoe Tilt Pad Journal Bearings—Part I: Performance Measurement
,”
Tribol. Trans.
,
42
(
3
), pp.
541
547
.
8.
Pettinato
,
B. C.
, and
De Choudhury
,
P.
,
1999
, “
Test Results of Key and Spherical Pivot Five-Shoe Tilt Pad Journal Bearings—Part II: Dynamic Measurements
,”
Tribol. Trans.
,
42
(
3
), pp.
675
680
.
9.
Sabnavis
,
G.
,
2005
, “
Test Results for Shaft Tracking Behavior of Pads in a Spherical Pivot Type Tilting Pad Journal Bearing
,” Master’s thesis,
Virginia Polytechnic Institute and State University
.
10.
Kim
,
S. G.
, and
Kim
,
K. W.
,
2008
, “
Influence of Pad-Pivot Friction on Tilting Pad Journal Bearing
,”
Tribol. Int.
,
41
(
8
), pp.
694
703
.
11.
He
,
F.
,
2017
, “
Including Pivot Friction in Pad Motion for a Tilting Pad Journal Bearing With Ball-Socket Pivots
,”
ASME Proceedings, Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, p.
V07AT34A036
.
12.
Stribeck
,
R.
,
1902
, “
Die Wesentlichen Eigenschaften der Gleit- und Rollenlarger
,”
Zeitschrift des Vereines Deutscher Ingenieure
,
46
, pp.
1341–1348, 1432–1438, 1463–1470
.
13.
Levine
,
W. S.
,
2000
,
Control System Applications
,
CRC Press, New York
.
14.
Lu
,
X.
,
Khonsari
,
M. M.
, and
Gelink
,
E. R.
,
2006
, “
The Stribeck Curve: Experimental Results and Theoretical Prediction
,”
ASME J. Tribol.
,
128
(
4
), pp.
789
794
.
15.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods
,
Wiley & Sons
,
New York
.
16.
Hollis
,
P.
, and
Taylor
,
D. L.
,
1986
, “
Hopf Bifurcation to Limit Cycles in Fluid Film Bearings
,”
ASME J. Tribol.
,
108
(
2
), pp.
184
189
.
17.
Kim
,
S.
, and
Palazzolo
,
A. B.
,
2018
, “
Bifurcation Analysis of a Rotor Supported by Five-Pad Tilting Pad Journal Bearings Using Numerical Continuation
,”
ASME J. Tribol.
,
140
(
2
), p.
021701
.
18.
Abu-Mahfouz
,
I.
, and
Adams
,
M. L.
,
2005
, “
Numerical Study of Some Nonlinear Dynamics of a Rotor Supported on a Three-Pad Tilting Pad Journal Bearing (TPJB)
,”
ASME J. Vib. Acoust.
,
127
(
3
), pp.
262
272
.
You do not currently have access to this content.