Scratch-related magnetic signal degradation can occur during magnetic storage hard disk drive operations when the read-write heads contact the spinning multilayer disks. To investigate this phenomenon, controlled nanoscratch experiments were performed on perpendicular magnetic recording media using various indenters of different radii of curvature. Various loading conditions were used to cause permanent scratches that were measured using atomic force microscopy. The nanoscratch experiments were simulated using finite element analysis (FEA) that included the detailed nanometer scale thin-film multilayer mechanical properties. The permanently deformed field in the subsurface magnetic recording layer was extracted from the FEA results. The residual scratch widths measured on the surface of the magnetic storage disk were directly compared with the residual subsurface widths of the region on the magnetic recording layer, where extensive permanent lateral deformation was present. It was found that the subsurface widths of the deformed regions were significantly larger than the surface scratch widths. Thus, subsurface thin-film layers, such as the magnetic recording layer, could be damaged without observable damage to the protective top surface carbon overcoat. The exact location and extent of damage to the magnetic recording layer depends on the scratch load, size of scratch tip, and the friction at the interface. Such permanent deformation in magnetic recording layer could lead to demagnetization, which has been reported in the literature.

1.
Lee
,
S. -C.
,
Hong
,
S. -Y.
,
Kim
,
N. -Y.
,
Ferber
,
J.
,
Che
,
X.
, and
Strom
,
B. D.
, 2009, “
Stress Induced Permanent Magnetic Signal Degradation of Perpendicular Magnetic Recording System
,”
ASME J. Tribol.
0742-4787,
131
(
1
), p.
011904
.
2.
Furukawa
,
M.
,
Xu
,
J.
,
Shimizu
,
Y.
, and
Kato
,
Y.
, 2008, “
Scratch Induced Demagnetization of Perpendicular Magnetic Disk
,”
IEEE Trans. Magn.
0018-9464,
44
(
11
), pp.
3633
3636
.
3.
Xu
,
J.
,
Furukawa
,
M.
,
Nakamura
,
J.
, and
Honda
,
M.
, 2009, “
Mechanical Demagnetization at Head Disk Interface of Perpendicular Recording
,”
IEEE Trans. Magn.
0018-9464,
45
(
2
), pp.
893
898
.
4.
Jeong
,
T. G.
, and
Bogy
,
D. B.
, 1993, “
Dynamic Loading Impact Induced Demagnetization in Thin Film Media
,”
IEEE Trans. Magn.
0018-9464,
29
(
6
), pp.
3903
3905
.
5.
Liu
,
B.
, and
Ma
,
Y.
, 2003, “
Visualization and Characterization of Slider-Disk Interactions in Dynamic Load/Unload Processes
,”
IEEE Trans. Magn.
0018-9464,
39
(
2
), pp.
743
748
.
6.
Knigge
,
B.
, and
Talke
,
F. E.
, 2000, “
Contact Force Measurement Using Acoustic Emission Analysis and System Identification Methods
,”
Tribol. Int.
0301-679X,
33
(
9
), pp.
639
646
.
7.
Suk
,
M.
, and
Gillis
,
D.
, 1998, “
Effect of Slider Burnish on Disk Damage During Dynamic Load/Unload
,”
ASME J. Tribol.
0742-4787,
120
(
2
), pp.
332
338
.
8.
Fu
,
T. -C.
, and
Bogy
,
D. B.
, 2000, “
Analysis of Stresses Induced by Dynamic Load Head-Disk Contacts
,”
ASME J. Tribol.
0742-4787,
122
(
1
), pp.
233
237
.
9.
Yu
,
N.
,
Polycarpou
,
A. A.
, and
Hanchi
,
J. V.
, 2008, “
Elastic Contact Mechanics-Based Contact and Flash Temperature Analysis of Impact-Induced Head Disk Interface Damage
,”
Microsyst. Technol.
0946-7076,
14
(
2
), pp.
215
227
.
10.
Katta
,
R. R.
,
Polycarpou
,
A. A.
,
Hanchi
,
J. V.
, and
Roy
,
M.
, 2009, “
Analytical and Experimental Elastic-Plastic Impact Analysis of Magnetic Storage Head-Disk Interfaces
,”
ASME J. Tribol.
0742-4787,
131
(
1
), p.
011902
.
11.
Katta
,
R. R.
,
Polycarpou
,
A. A.
,
Hanchi
,
J. V.
, and
Crone
,
R. M.
, 2009, “
High Velocity Oblique Impact and Coefficient of Restitution of Head-Disk Interface Operational Shock
,”
ASME J. Tribol.
0742-4787,
131
(
2
), p.
021903
.
12.
Hoshi
,
Y.
,
Matsuoka
,
M.
,
Naoe
,
M.
, and
Yamanaka
,
S.
, 1984, “
Demagnetization of Co-Cr Films Induced by Stress and Heat
,”
IEEE Trans. Magn.
0018-9464,
20
(
5
), pp.
797
799
.
13.
Chikazumi
,
S.
, 1964,
Physics of Magnetism
,
Wiley
,
New York
.
14.
Lin
,
J. K.
,
Sivertsen
,
J. M.
, and
Judy
,
J. H.
, 1986, “
Origins of Stress-Induced Perpendicular Magnetic Anisotropy of Sputtered Iron Oxide Thin Films
,”
IEEE Trans. Magn.
0018-9464,
22
(
5
), pp.
594
596
.
15.
Mauri
,
D.
,
Speriosu
,
V. S.
,
Yogi
,
T.
,
Castillo
,
G.
, and
Peterson
,
D. T.
, 1990, “
Magnetoelastic Properties of Very Thin Co-Alloy Films
,”
IEEE Trans. Magn.
0018-9464,
26
(
5
), pp.
1584
1586
.
16.
King
,
R. B.
, and
O’Sullivan
,
T. C.
, 1987, “
Sliding Contact Stresses in a Two-Dimensional Layered Elastic Half-space
,”
Int. J. Solids Struct.
0020-7683,
23
(
5
), pp.
581
597
.
17.
Tian
,
H.
, and
Saka
,
N.
, 1991, “
Finite Element Analysis of an Elastic-Plastic Two Layer Half Space: Normal Contact
,”
Wear
0043-1648,
148
(
1
), pp.
47
68
.
18.
Tian
,
H.
, and
Saka
,
N.
, 1991, “
Finite Element Analysis of an Elastic-Plastic Two Layer Half Space: Sliding Contact
,”
Wear
0043-1648,
148
(
2
), pp.
261
285
.
19.
Kral
,
E. R.
, and
Komvpoulos
,
K.
, 1996, “
Three-Dimensional Finite Element Analysis of Subsurface Stresses and Shakedown Due to Repeated Sliding on a Layered Medium
,”
ASME J. Appl. Mech.
0021-8936,
63
(
4
), pp.
967
973
.
20.
Katta
,
R. R.
,
Escobar
,
E. N.
,
Polycarpou
,
A. A.
, and
Lee
,
S. -C.
, 2009, “
Plane Strain Sliding Contact of Multilayer Magnetic Storage Thin-Films Using the Finite Element Method
,”
Microsyst. Technol.
0946-7076,
15
(
7
), pp.
1097
1110
.
21.
Holmberg
,
K.
,
Laukkanen
,
A.
,
Ronkainen
,
H.
,
Walin
,
J.
, and
Varjus
,
S.
, 2003, “
A Model for Stresses, Crack Generation and Fracture Toughness Calculation in Scratched TiN-Coated Steel Surfaces
,”
Wear
0043-1648,
254
(
3–4
), pp.
278
291
.
22.
Holmberg
,
K.
,
Laukkanen
,
A.
,
Ronkainen
,
H.
,
Walin
,
J.
,
Varjus
,
S.
, and
Koskinen
,
J.
, 2006, “
Tribological Contact Analysis of a Rigid Ball Sliding on a Hard Coated Surface Part II: Material Deformations, Influence of Coating Thickness and Young’s modulus
,”
Surf. Coat. Technol.
0257-8972,
200
(
12–13
), pp.
3810
3823
.
23.
Dassault Systemes S.A
, 2008, ABAQUS™: Version 6.6.
25.
Yu
,
N.
,
Bonin
,
W. A.
, and
Polycarpou
,
A. A.
, 2005, “
High-Resolution Capacitive Load-Displacement Transducer and Its Application in Nanoindentation and Adhesion Force Measurements
,”
Rev. Sci. Instrum.
0034-6748,
76
(
4
), pp.
045109
.
26.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
(
6
), pp.
1564
1583
.
27.
Yeo
,
C. D.
, and
Polycarpou
,
A. A.
, 2007, “
A Correction to the Nanoindentation Technique for Ultrashallow Indenting Depths
,”
J. Mater. Res.
0884-2914,
22
(
9
), pp.
2359
2362
.
28.
Tabor
,
D.
, 1951,
Hardness of Metals
,
Oxford University Press
,
New York
.
29.
Lee
,
K. -M.
,
Yeo
,
C. -D.
, and
Polycarpou
,
A. A.
, 2007, “
Nanomechanical Properties and Nanowear Measurement for Sub-10-nm Thick Films in Magnetic Storage
,”
Exp. Mech.
0014-4851,
47
, pp.
107
121
.
30.
Robertson
,
J.
, 2002, “
Diamond-Like Amorphous Carbon
,”
Mater. Sci. Eng. R.
0927-796X,
37
(
4–6
), pp.
129
281
.
31.
Cho
,
S. -J.
,
Lee
,
K. -R.
,
Eun
,
K. Y.
,
Hahn
,
J. H.
, and
Ko
,
D. -H.
, 1999, “
Determination of Elastic Modulus and Poisson’s Ratio of Diamond-Like Carbon Films
,”
Thin Solid Films
0040-6090,
341
(
1–2
), pp.
207
210
.
32.
Callister
,
W. D.
, 2000,
Materials Science and Engineering
,
Wiley
,
New York
.
33.
Dao
,
M.
,
Chollacoop
,
N.
,
Van Vliet
,
K. J.
,
Venkatesh
,
T. A.
, and
Suresh
,
S.
, 2001, “
Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,”
Acta Mater.
1359-6454,
49
(
19
), pp.
3899
3918
.
34.
Bucaille
,
J. L.
,
Stauss
,
S.
,
Felder
,
E.
, and
Michler
,
J.
, 2003, “
Determination of Plastic Properties of Metals by Instrumented Indentation Using Different Sharp Indenters
,”
Acta Mater.
1359-6454,
51
(
6
), pp.
1663
1678
.
35.
Barinov
,
S. M.
, 1997, “
On the Strain Hardening-Plastic Strain Relation for Nickel Aluminides in Bending Tests
,”
J. Mater. Sci. Lett.
0261-8028,
16
(
5
), pp.
358
360
.
36.
Karimpoor
,
A. A.
,
Erb
,
U.
,
Aust
,
K. T.
, and
Palumbo
,
G.
, 2003, “
High Strength Nanocrystalline Cobalt With High Tensile Ductility
,”
Scr. Mater.
1359-6462,
49
(
7
), pp.
651
656
.
37.
Dowling
,
N. E.
, 1999,
Mechanical Behavior of Materials
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
38.
Hamilton
,
G. M.
, 1983, “
Explicit Equations for the Stresses Beneath a Sliding Spherical Contact
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
197
, pp.
53
59
.
39.
Bhushan
,
B.
, 2002,
Introduction to Tribology
,
Wiley
,
New York
.
40.
Yu
,
N.
,
Polycarpou
,
A. A.
, and
Conry
,
T. F.
, 2004, “
Tip-Radius Effect in Finite Element Modeling of Sub-50 nm Shallow Nanoindentation
,”
Thin Solid Films
0040-6090,
450
(
2
), pp.
295
303
.
41.
Brand
,
J. L.
,
Roy
,
M.
, and
Frenz
,
A. D.
, 2007, “
Designing, Modeling, and Testing Particle Robust Air Bearings for Perpendicular Recording Media
,”
IEEE Trans. Magn.
0018-9464,
43
(
9
), pp.
3791
3795
.
42.
Luan
,
B.
, and
Robbins
,
M. O.
, 2005, “
The Breakdown of Continuum Models for Mechanical Contacts
,”
Nature (London)
0028-0836,
435
, pp.
929
932
.
43.
Landman
,
U.
,
Luedtke
,
W. D.
, and
Gao
,
J.
, 1996, “
Atomic-Scale Issues in Tribology: Interfacial Junctions and Nano-Elastohydrodynamics
,”
Langmuir
0743-7463,
12
(
19
), pp.
4514
4528
.
You do not currently have access to this content.