A general elastohydrodynamic lubrication model was developed to consider the nonsphericity of the bearing geometry in hip joint implants, both under the steady and transient conditions. The articulation between the femoral head and the acetabular cup was represented by a nominal ball-in-socket configuration. The nonsphericity was introduced on the acetabular cup and femoral head bearing surfaces in the form of an ellipsoidal surface represented by variations of the radii of curvature given by the three semi-axis lengths of the ellipsoid with regard to a nominal spherical surface. An appropriate spherical coordinate system and solution domain discretization were used to facilitate the numerical simulations. Both the equivalent discrete spherical convolution model and the corresponding spherical fast Fourier transform technique were used to evaluate the elastic deformation of either the spherical or nonspherical bearing surfaces. A fixed-tracked method was also developed to simulate the complex morphology introduced by moving the interface of the nonspherical bearing surfaces. The general methodology for the nonspherical bearing was first applied to investigate the steady-state elastohydrodynamic lubrication of an ellipsoidal cup articulating against a spherical head in a typical metal-on-metal hip joint implant. Subsequently, the problem of an ellipsoidal head articulating against a spherical cup was considered under the transient conditions. The significance of nonsphericity of bearing geometry in hip joint implants due to manufacturing, designing, and wear was discussed. The results obtained showed that the effect of a nonspherical bearing surface geometry on elastohydrodynamic lubrication was dependent on the orientation, the magnitude, and the deviation direction of the nonsphericity. A well-controlled nonsphericity was seen to be beneficial for improving the lubrication.

1.
Brown
,
S. S.
, and
Clarke
,
I. C.
, 2006, “
A Review of Lubrication Conditions for Wear Simulation in Artificial Hip Joint Replacements
,”
STLE Tribol. Trans.
1040-2004,
49
, pp.
72
78
.
2.
Paul
,
J. P.
, 1967, “
Forces Transmitted by Joints in the Human Body
,”
Proc. Inst. Mech. Eng.
0020-3483,
181
, pp.
8
15
.
3.
Growney
,
E.
,
Meglan
,
D.
,
Johson
,
M.
,
Cahalan
,
T.
, and
An
,
K. N.
, 1997, “
Repeated Measures of Adult Normal Walking Using a Video Tracking System
,”
Gait and Posture
0966-6362,
6
, pp.
147
162
.
4.
Scholes
,
S. C.
,
Unsworth
,
A.
, and
Goldsmith
,
A. A. J.
, 2000, “
A Friction Study of Total Hip Joint Replacements
,”
Phys. Med. Biol.
0031-9155,
45
(
12
), pp.
3721
3735
.
5.
Ingham
,
E.
, and
Fisher
,
J.
, 2005, “
The Role of Macrophages in Osteolysis of Total Joint Replacement
,”
Biomaterials
0142-9612,
26
(
11
), pp.
1271
86
.
6.
Goenka
,
P. K.
, and
Booker
,
J. F.
, 1980, “
Spherical Bearings: Static and Dynamics Analysis Via the Finite Element Method
,”
ASME J. Lubr. Technol.
0022-2305,
102
(
7
), pp.
308
319
.
7.
Ai
,
X. L.
, and
Cheng
,
H. S.
, 1996, “
Hydrodynamic Lubrication Analysis of Metallic Hip Joint
,”
Tribol. Trans.
1040-2004,
39
(
1
), pp.
103
111
.
8.
Meyer
,
D. M.
, and
Tichy
,
J. A.
, 2003, “
3-D Model of a Total Hip Replacement In Vivo Providing Hydrodynamic Pressure and Film Thickness for Walking and Bicycling
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
6
), pp.
777
784
.
9.
Mabuchi
,
K.
, and
Sasada
,
T.
, 1990, “
Numerical Analysis of Elastohydrodynamic Squeeze Film Lubrication of Total Hip Prostheses
,”
Wear
0043-1648,
140
(
1
), pp.
1
16
.
10.
Wang
,
C. T.
,
Wang
,
Y. L.
,
Chen
,
Q. L.
, and
Yang
,
M. R.
, 1990, “
Calculation of Elastohydrodynamic Lubrication Film Thickness for Hip Prostheses During Normal Walking
,”
Tribol. Trans.
1040-2004,
33
, pp.
239
245
.
11.
Udofia
,
I. J.
, and
Jin
,
Z. M.
, 2003, “
Elastohydrodynamic Lubrication Analysis of Metal-on-Metal Hip Resurfacing Prostheses
,”
J. Biomech.
0021-9290,
36
(
4
), pp.
537
544
.
12.
Wang
,
F. C.
, and
Jin
,
Z. M.
, 2004, “
Prediction of Elastic Deformation of Acetabular Cup and Femoral Head for Lubrication Analysis of Artificial Hip Joints
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
218
, pp.
201
208
.
13.
Wang
,
F. C.
, and
Jin
,
Z. M.
, 2004, “
Lubrication modeling of Artificial Hip Joints
,”
Proceedings of the IUTAM Symposium on Elastohydrodynamics and Micro-Elastohydrodynamics
, Cardiff, UK,
Springer
,
New York
, pp.
385
396
.
14.
Wang
,
F. C.
,
Liu
,
F.
, and
Jin
,
Z. M.
, 2004, “
A General Elastohydrodynamic Lubrication Analysis of Artificial Hip Joints Employing a Compliant Layered Socket Under Steady Rotation
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
218
, pp.
283
290
.
15.
Wang
,
F. C.
, and
Jin
,
Z. M.
, 2005, “
Elastohydrodynamic Lubrication Modeling of Artificial Hip Joints Under Steady-State Conditions
,”
ASME J. Tribol.
0742-4787,
127
(
4
), pp.
729
739
.
16.
Wang
,
F. C.
, and
Jin
,
Z. M.
, 2008, “
Transient Elastohydrodynamic Lubrication of Hip Joint Implants
,”
ASME J. Tribol.
0742-4787,
130
(
1
), p.
011007
.
17.
Wang
,
F. C.
,
Jin
,
Z. M.
, and
Udofia
,
I.
, 2005, “
Elastohydrodynamic Lubrication Modeling of Spherical Metal-on-Metal Artificial Hip Joints
,”
ASME Proceedings of the WTC2005, World Tribology Congress III
, Washington, DC, Paper No. WTC2005-63556, pp.
489
490
.
18.
Wang
,
F. C.
,
Galvin
,
A.
,
Jin
,
Z. M.
,
Ingham
,
E.
, and
Fisher
,
J.
, 2005, “
An Integrated Experimental and Theoretical Contact Mechanics Study of UHMWPE Hip Implants Tested in a Hip Simulator
,”
ASME Proceedings of the World Tribology Congress III
, Washington, DC, pp.
311
312
.
19.
Wang
,
F. C.
, and
Jin
,
Z. M.
, 2006, “
Lubrication Modeling of Artificial Hip Joints
,”
Solid Mechanics and Its Applications
, Vol.
134
,
IUTAM Symposium on Elastohydrodynamic and Micro-Elastohydrodynamic
,
R. W.
Snidle
and
H. P.
Evans
, eds.,
Springer
,
New York
, pp.
385
396
.
20.
Kothari
,
M.
,
Booker
,
J. F.
, and
Bartel
,
D. L.
, 1995, “
Analysis of Artificial Hip Joints as Spherical Bearings
,”
Proceedings of the 21st Leeds-Lyon Symposium on Tribology
, Leeds, UK, pp.
93
98
.
21.
Ito
,
H.
,
Minami
,
A.
,
Matsuno
,
T.
,
Tanino
,
H.
,
Yuhta
,
T.
, and
Nishimura
,
I.
, 2001, “
The Sphericity of the Bearing Surface in Total hip Arthroplasty
,”
J. Arthroplasty
0883-5403,
16
(
8
), pp.
1024
1029
.
22.
Leyen
,
S.
,
Kobel
,
S.
, and
Weber
,
W.
, 2006, “
Sphericity Related Contact Mechanics in Ceramic-on-Ceramic Hip Joint Replacements
,”
J. Biomech.
0021-9290,
39
(Suppl. 1), p.
S530
.
23.
Rosenberg
,
O.
,
Gawlik
,
J.
,
Mamalis
,
A. G.
,
Vozny
,
V.
,
Sokhan
,
C.
, and
Kim
,
D. J.
, 2006, “
Trends and Developments in the Manufacturing of Hip Joints: Overview
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
27
, pp.
537
542
.
24.
ISO 3290
, 1975, Rolling Bearing-Bearing Parts-Ball for Rolling Bearings, E.
25.
Medley
,
J. B.
,
Krygier
,
J. J.
,
Bobyn
,
J. D.
,
Chan
,
F. W.
,
Lippincott
,
A.
, and
Tanzer
,
M.
, 1997, “
Kinematics of the MATCO Hip Simulator and Issues Related to Wear Testing of Metal-Metal Implants
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
211
(
1
), pp.
89
99
.
26.
Hardaker
,
C.
,
Dowson
,
D.
, and
Isaac
,
G. H.
, 2006, “
Head Replacement, Head Rotation, and Surface Damage Effects on Metal-on-Metal Total Hip Replacements: A Hip Simulator Study
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
2
), pp.
209
17
.
27.
Sieber
,
H. P.
,
Rieker
,
C. B.
, and
Kottig
,
P.
, 1999, “
Analysis of 118 Second-Generation Metal-on-Metal Retrieved Hip Joint Implants
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
81
(
1
), pp.
46
50
.
28.
Wang
,
F. C.
,
Brockett
,
C. L.
,
Williams
,
S.
,
Jin
,
Z.
, and
Fisher
,
J.
, 2006, “
Lubrication Modelling and Friction Prediction in Metal-on-Metal Hip Joint Implants
,”
J. Biomech.
0021-9290,
39
, p.
S139
.
29.
Wang
,
F. C.
,
Brockett
,
C. L.
,
Williams
,
S.
,
Udofia
,
I.
,
Fisher
,
J.
, and
Jin
,
Z.
, 2008, “
Lubrication and Friction Prediction in Metal-on-Metal Hip Joint Implants
,” IOP
Phys. Med. Biol.
0031-9155,
53
, pp.
1277
1293
.
30.
Wang
,
F. C.
, and
Jin
,
Z. M.
, 2007, “
Effect of Non-Spherical Bearing Geometry on Transient Elastohydrodynamic Lubrication in Metal-on-Metal Hip Joint Implants
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
221
, pp.
379
389
.
31.
Yao
,
J. Q.
,
Laurent
,
M. P.
,
Johnson
,
T. S.
,
Blanchard
,
C. R.
, and
Crowinshield
,
R. D.
, 2003, “
The Influence of Lubricant and Material on Polymer/CoCr Sliding Friction
,”
Wear
0043-1648,
255
, pp.
780
784
.
32.
Kizilsu
,
G.
, 2004, “
Different Method for Determining Normal Section curvatures on Earth Ellipsoid
,”
J. Surv. Eng.
0733-9453,
130
(
4
), pp.
163
174
.
33.
Harun
,
M. N.
,
Wang
,
F. C.
,
Jin
,
Z. M.
, and
Fisher
,
J.
, 2007, “
Development of Computational Wear Simulation of Metal-on-Metal Hip Joint Replacements
,”
Trans. Annu. Meet.-Orthop. Res. Soc.
,
32
, Paper No. 1661. 0733-9453
You do not currently have access to this content.