Although in principle simple and neat results are obtained with the classical Greenwood-Williamson (GW) model (linearity of real contact area and conductance with load), the definition of asperity as local maxima of the surface leads to uncertain results for multiscale surfaces, as suspected already by Greenwood in a recent self-assessment of his theory [Greenwood, J. A., and Wu, J.J., 2001, “Surface roughness and contact: an apology,” Meccanica 36(6), pp. 617–630]. Quoting the conclusions in the latter paper “The introduction by Greenwood and Williamson in 1966 of the definition of a ‘peak’ as a point higher than its neighbours on a profile sampled at a finite sampling interval was, in retrospect, a mistake, although it is possible that it was a necessary mistake”. Greenwood and Wu suggest that an alternative definition of asperity captures the mechanics of the contact more correctly, that of Aramaki-Majumbdar-Bhushan (AMB). Here, numerical experiments confirm that with a Weierstrass series fractal profile (taken as a 2D slice of a true fractal surface but then used to define a set of circular asperities), load and conductance for numerically measured asperities defined “à la Greenwood-Williamson” (3PP, 3-point peaks) differ significantly from the results obtained with the Aramaki-Majumbdar-Bhushan definition of asperity. The AMB definition, which is based on the bearing area intersection best parabola fitting, gives finite limits for all quantities and varies very little with small scale terms, and tends to coincide with the 3PP method only at unrealistically large fractal dimensions D, or at unrealistically large separations. However, it remains unclear how the AMB results compare with the proper treatment of the problem when interaction effects are fully taken into account.

1.
Holm
,
R.
, 1958,
Electrical Contacts Handbook
,
Springer-Verlag
, Berlin.
2.
Greenwood
,
J. A.
, 1966, “
Constriction Resistance and the Area of Real Contact
,”
Br. J. Appl. Phys.
0508-3443,
17
, pp.
1621
1632
.
3.
Archard
,
J. F.
, 1957, “
Elastic Deformation and the Laws of Friction
”,
Proc. R. Soc. London, Ser. A
1364-5021,
243
, pp.
190
205
.
4.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
The Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
5.
Laming
,
L. C.
, 1961, “
Thermal conductance of machined metal surfaces in a vacuum environment
,”
Proceeding of International Conference Developed heat transfer
,
ASME
,
New York
, pp.
65
77
.
6.
Fletcher
,
L. S.
, and
Gyorog
,
D. A.
, 1971, “
Prediction of Thermal Contact Conductance between Similar Metal Surfaces
,”
Prog. Astronaut. Aeronaut.
0079-6050,
24
, pp.
273
288
.
7.
Mal’kov
,
V. A.
, 1970, “
Thermal Contact Resistance of Machined Metal Surfaces in a Vacuum Environment
,”
Heat Transfer-Sov. Res.
0440-5749,
2
(
4
), pp.
24
33
.
8.
Tien
,
C. L.
, 1968, “
A Correlation for Thermal Contact Conductance of Nominally Flat Surfaces in Vacuum
,” in
Proceeding of 7th Conf on Thermal Conductivity
,
U.S. National Bureau of Standards
, Gaithersburg, MD, pp.
755
759
.
9.
Thomas
,
T. R.
, and
Probert
,
S. D.
, 1970, “
Thermal Contact Resistance: The Directional Effect and Other Problems
,”
Int. J. Heat Mass Transfer
0017-9310,
13
, pp.
789
807
.
10.
Mikic
,
B. B.
, 1974, “
Thermal Contact Conductance: Theoretical Considerations
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
205
214
.
11.
Yovanovich
,
M. M.
, 1982, “
Thermal Contact Correlations
,” in
Spacecraft Radiative Transfer and Temperature Control, Progress in Astronautics and Aeronautics
,
T. E.
Horton
, ed.,
AIAA
, New York, pp.
83
102
.
12.
Antonetti
,
V. W.
,
Whittle
,
T. D.
, and
Simons
,
R. E.
, 1993, “
An Approximate Thermal Contact Conductance Correlation
,”
ASME J. Electron. Packag.
1043-7398,
115
, pp.
131
134
.
13.
Copper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
, 1969, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
279
300
.
14.
Thomas
,
T. R.
, 1999,
Rough Surfaces
, 2nd ed.,
Imperial College Press
, London.
15.
Sayles
,
R. S.
, and
Thomas
,
T. R.
, 1978, “
Surface Topography as a Non Stationary Random Process
,”
Nature (London)
0028-0836,
271
, pp.
431
434
.
16.
Mandelbrot
,
B. B.
, 1982,
The Fractal Geometry of Nature
,
Freeman
, San Francisco.
17.
Greenwood
,
J. A.
, and
Wu
,
J. J.
, 2001, “
Surface Roughness and Contact: An Apology
,”
Meccanica
0025-6455,
36
(
6
), pp.
617
630
.
18.
Thomas
,
T. R.
, and
Sayles
,
R.
, 1973, “
Discussion, to Radhakrishnan, V., Analysis of Some of the Reference Lines Used for Measuring Surface Roughness
,”
Proc. Inst. Mech. Eng.
0020-3483,
187
, pp.
575
582
.
19.
Thomas
,
T. R.
, and
Rosen
,
B. G.
, 2000, “
Determination of the Optimum Sampling Interval for Rough Contact Mechanics
,”
Tribol. Int.
0301-679X,
33
(
9
), pp
601
610
.
20.
Borri-Brunetto
,
M.
,
Carpinteri
,
A.
, and
Chiaia
,
B.
, 1998, “
Lacunarity of the contact domain between elastic bodies with rough boundaries
,” in
Probamat-21st Century: Probabilities and Materials
,
G.
Frantziskonis
, ed.,
Kluwer
, Dordrecht, pp.
45
64
.
21.
Manners
,
W.
, 2000, “
Pressure Required to Flatten an Elastic Random Rough Profile
,”
Int. J. Mech. Sci.
0020-7403,
42
(
12
), pp.
2321
2336
.
22.
Greenwood
,
J. A.
, 1996, “
Contact Pressure Fluctuations
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
210
, pp.
281
287
.
23.
Ciavarella
,
M.
,
Demelio
,
G.
,
Barber
,
J. R.
, and
Jang
,
Y. H.
, 2000, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. R. Soc. London, Ser. A
1364-5021,
456
, pp.
387
405
.
24.
Ciavarella
,
M.
, and
Demelio
,
G.
, 2001, “
Elastic Multiscale Contact of Rough Surfaces: Archard’s Model Revisited and Comparisons With Modern fractal Models
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
496
498
.
25.
Persson
,
B. N. J.
, 2001, “
Theory of Rubber Friction and Contact Mechanics
,”
Phys. Rev. Lett.
0031-9007,
87
, p.
1161
.
26.
Barber
,
J. R.
, 2003, “
Bounds on the Electrical Resistance Between Contacting Elastic Rough Bodies
,”
Proc. R. Soc. London, Ser. A
1364-5021,
459
, pp.
53
66
.
27.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge, Para. 12.
28.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
, 1975, “
The Elastic Contact of a Rough Surface
,”
Wear
0043-1648,
35
, pp.
87
111
.
29.
Nayak
,
P. R.
, 1971, “
Random Process Model of Rough Surfaces
,”
ASME J. Lubr. Technol.
0022-2305,
93
, pp.
398
407
.
30.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
, pp.
1
11
.
31.
Jang
,
Y. H.
, 2004, “
Distribution of Three-Dimensional Islands From Two-Dimensional Line Segment Length Distribution
,”
Wear
0043-1648,
257
(
1-2
), pp.
131
137
.
32.
Aramaki
,
H.
,
Cheng
,
H. S.
, and
Chung
,
Y. W.
, 1993, “
The Contact Between Rough Surfaces With Longitudinal Texture. 1. Average Contact Pressure and Real Contact Area
,”
ASME J. Tribol.
0742-4787,
115
(
3
), pp.
419
424
.
You do not currently have access to this content.