Three-dimensional rough surfaces were generated using a modified two-variable Weierstrass-Mandelbrot function with fractal parameters determined from real surface images. The number and size of truncated asperities were assumed to follow power-law relations. A finite element model of a rigid sphere in normal contact with a semi-infinite elastic-plastic homogeneous medium was used to obtain a constitutive relation between the mean contact pressure, real contact area, and corresponding representative strain. The contact model was extended to layered media by modifying the constitutive equation of the homogeneous medium to include the effects of the mechanical properties of the layer and substrate materials and the layer thickness. Finite element simulations of an elastic-plastic layered medium indented by a rigid sphere validated the correctness of the modified contact model. Numerical results for the contact load and real contact area are presented for real surface topographies resembling those of magnetic recording heads and smooth rigid disks. The model yields insight into the evolution of elastic, elastic-plastic, and fully plastic deformation at the contact interface in terms of the maximum local surface interference. The dependence of the contact load and real contact area on the fractal parameters and the carbon overcoat thickness is interpreted in light of simulation results obtained for a tri-pad picoslider in contact with a smooth thin-film hard disk.

1.
Aleksandrov
,
V. M.
,
Babeshko
,
V. A.
, and
Kucherov
,
V. A.
,
1966
, “
Contact Problems for an Elastic Layer of Slight Thickness
,”
J. Appl. Math. Mech.
,
30
, pp.
124
142
.
2.
Alblas
,
J. B.
, and
Kuipers
,
M.
,
1970
, “
On the Two Dimensional Problem of a Cylindrical Stamp Pressed into a Thin Elastic Layer
,”
Acta Mech.
,
9
, pp.
292
311
.
3.
Pao
,
Y. C.
,
Wu
,
T.-S.
, and
Chiu
,
Y. P.
,
1971
, “
Bounds on the Maximum Contact Stress of an Indented Elastic Layer
,”
ASME J. Appl. Mech.
,
38
, pp.
608
614
.
4.
Ling, F. F., and Lai, W. M., 1980, “Surface Mechanics of Layered Media,” Solid Contact and Lubrication, Cheng, H. S., and Keer, L. M., eds., AMD-Vol. 39, ASME, New York, pp. 27–50.
5.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
6.
Mesarovic
,
S. Dj.
, and
Fleck
,
N. A.
,
1999
, “
Spherical Indentation of Elastic-Plastic Solids
,”
Proc. R. Soc. London, Ser. A
,
455
, pp.
2707
2728
.
7.
Kennedy
,
F. E.
, and
Ling
,
F. F.
,
1974
, “
Elasto-Plastic Indentation of a Layered Medium
,”
ASME J. Eng. Mater. Technol.
,
96
, pp.
97
103
.
8.
Van der Zwaag
,
S.
, and
Field
,
J. E.
,
1982
, “
The Effect of Thin Hard Coatings on the Hertzian Stress Field
,”
Philos. Mag. A
,
46
, pp.
133
150
.
9.
Komvopoulos
,
K.
,
1988
, “
Finite Element Analysis of a Layered Elastic Solid in Normal Contact With a Rigid Surface
,”
ASME J. Tribol.
,
110
, pp.
477
485
.
10.
Komvopoulos
,
K.
,
1989
, “
Elastic-Plastic Finite Element Analysis of Indented Layered Media
,”
ASME J. Tribol.
,
111
, pp.
430
439
.
11.
Tian
,
H.
, and
Saka
,
N.
,
1991
, “
Finite Element Analysis of an Elastic-Plastic Two-Layer Half-Space: Normal Contact
,”
Wear
,
148
, pp.
47
68
.
12.
Kral
,
E. R.
, and
Komvopoulos
,
K.
,
1996
, “
Three-Dimensional Finite Element Analysis of Surface Deformation and Stresses in an Elastic-Plastic Layered Medium Subjected to Indentation and Sliding Contact Loading
,”
ASME J. Appl. Mech.
,
63
, pp.
365
375
.
13.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
14.
Larsson
,
J.
,
Biwa
,
S.
, and
Stora˙kers
,
B.
,
1999
, “
Inelastic Flattening of Rough Surfaces
,”
Mech. Mater.
,
31
, pp.
29
41
.
15.
Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, Freeman, New York.
16.
Borodich
,
F. M.
, and
Onishchenko
,
D. A.
,
1999
, “
Similarity and Fractality in the Modelling of Roughness by a Multilevel Profile with Hierarchical Structure
,”
Int. J. Solids Struct.
,
36
, pp.
2585
2612
.
17.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
,
136
, pp.
313
327
.
18.
Berry
,
M. V.
, and
Lewis
,
Z. V.
,
1980
, “
On the Weierstrass-Mandelbrot Fractal Function
,”
Proc. R. Soc. London, Ser. A
,
370
, pp.
459
484
.
19.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
, pp.
1
11
.
20.
Blackmore
,
D.
, and
Zhou
,
J. G.
,
1998
, “
Fractal Analysis of Height Distributions of Anisotropic Rough Surfaces
,”
Fractals
,
6
, pp.
43
58
.
21.
Blackmore
,
D.
, and
Zhou
,
G.
,
1998
, “
A New Fractal Model for Anisotropic Surfaces
,”
Int. J. Mach. Tools Manuf.
,
38
, pp.
551
557
.
22.
Ciavarella
,
M.
,
Demelio
,
G.
,
Barber
,
J. R.
, and
Jang
,
Y. H.
,
2000
, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. R. Soc. London, Ser. A
,
456
, pp.
387
405
.
23.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
,
116
, pp.
812
823
.
24.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications
,”
ASME J. Tribol.
,
116
, pp.
824
832
.
25.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1995
, “
A Fractal Theory of the Temperature Distribution at Elastic Contacts of Fast Sliding Surfaces
,”
ASME J. Tribol.
,
117
, pp.
203
215
.
26.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
, pp.
3617
3624
.
27.
Ausloos
,
M.
, and
Berman
,
D. H.
,
1985
, “
A Multivariable Weierstrass-Mandelbrot Function
,”
Proc. R. Soc. London, Ser. A
,
400
, pp.
331
350
.
28.
Russ, J. C., 1994, Fractal Surfaces, Plenum Press, New York, p. 168.
29.
Tabor
,
D.
,
1970
, “
The Hardness of Solids
,”
Rev. Phys. Technol.
,
1
, pp.
145
179
.
30.
Bhattacharya
,
A. K.
, and
Nix
,
W. D.
,
1988
, “
Analysis of Elastic and Plastic Deformation Associated with Indentation Testing of Thin Films on Substrates
,”
Int. J. Solids Struct.
,
24
, pp.
1287
1298
.
31.
King
,
R. B.
,
1987
, “
Elastic Analysis of Some Punch Problems for a Layered Medium
,”
Int. J. Solids Struct.
,
23
, pp.
1657
1664
.
32.
Komvopoulos
,
K.
,
2000
, “
Head-Disk Interface Contact Mechanics for Ultrahigh Density Magnetic Recording
,”
Wear
,
238
, pp.
1
11
.
33.
Anguiano, E., Pancorbo, M., and Aguilar, M., 1994, Fractals in the Natural and Applied Sciences, Novak, M. M., ed., Elsevier Science, New York, pp. 37–46.
You do not currently have access to this content.