Abstract

The use of artificial roughness to improve the performance and efficiency of solar air heater is one of the most adopted approaches. The selection of geometrical and flow parameters and their ranges draw the attention of researchers to reach optimum design value. The present experimental and simulation-based investigation deals with the optimization of thermal characteristics (Nusselt number and friction factor) and geometric roughness parameters for a two-sided curvilinear transverse rib-roughened solar air heater. Data collected from the experiment and simulation were further processed by response surface methodology to optimize the thermal characteristics and roughness parameters. The main roughness parameter for two-sided curvilinear rib roughness was the relative roughness height (e/Dh) ranges from 0.7 to 1.4, relative roughness pitch (p/e) ranges from 10 to 25, and Reynolds number (Re) ranges from 3800 to 18,000. Data collected from the simulation are used to develop a mathematical model using the analysis of variance (ANOVA) approach. To adopt the significant value predicted by the model, the coefficient of regression (R2) and confidence interval (p-value and F-value), with a probability of 95%, were considered. Nusselt number and friction factor achieve its optimum value (Nu maximum and f minimum) of 123.84 and 0.012 at e/Dh = 0.031, p/e = 21.42, and Re = 10,900.

References

1.
Dawn
,
S.
,
Tiwari
,
P. K.
,
Goswami
,
A. K.
, and
Mishra
,
M. K.
,
2016
, “
Recent Developments of Solar Energy in India: Perspectives, Strategies and Future Goals
,”
Renewable Sustainable Energy Rev.
,
62
(
10
), pp.
215
235
.
2.
Foster
,
R.
,
Ghassemi
,
M.
, and
Cota
,
A.
,
2009
,
Solar Energy: Renewable Energy and the Environment
,
CRC Press
,
Boca Raton, FL
.
3.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1980
,
Solar Engineering of Thermal Processes
,
Wiley
,
Hoboken, NJ
.
4.
Vliet Gary
,
C.
,
2000
, “
Principles of Solar Engineering
,”
ASME J. Sol. Energy Eng.
,
122
(
2
), p.
114
.
5.
McAdams
,
W. H.
,
1954
, “
Heat Transmission McGraw-Hill New York
,”
Sol. Energy
,
3
, p.
999
.
6.
Joule
,
J. P.
,
1861
, “
VIII. On the Surface-Condensation of Steam
,”
Philos. Trans. R. Soc. London
151
, pp.
133
160
.
7.
Nikuradse
,
J.
,
1950
, “Laws of Flow in Rough Pipes,” National Advisory Committee for Aeronautics, Technical Memorandum 1292.
8.
Singh Yadav
,
A.
, and
Kumar Thapak
,
M.
,
2014
, “
Artificially Roughened Solar Air Heater: Experimental Investigations
,”
Renewable Sustainable Energy Rev.
,
36
(
8
), pp.
370
411
.
9.
Faujdar
,
S.
, and
Agrawal
,
M.
,
2021
, “
Computational Fluid Dynamics Based Numerical Study to Determine the Performance of Triangular Solar Air Heater Duct Having Perforated Baffles in V-Down Pattern Mounted Underneath Absorber Plate
,”
Sol. Energy
,
228
(
16
), pp.
235
252
.
10.
Salman
,
M.
,
Chauhan
,
R.
,
Singh
,
T.
,
Prabakaran
,
R.
, and
Kim
,
S. C.
,
2023
, “
Experimental Investigation and Optimization of Dimple-Roughened Impinging Jet Solar Air Collector Using a Novel AHP-MABAC Approach
,”
Environ. Sci. Pollut. Res.
,
30
(
13
), pp.
36259
36275
.
11.
Matheswaran
,
M. M.
,
Arjunan
,
T. V.
,
Muthusamy
,
S.
,
Natrayan
,
L.
,
Panchal
,
H.
,
Subramaniam
,
S.
,
Khedkar
,
N. K.
,
El-Shafay
,
A. S.
, and
Sonawane
,
C.
,
2022
, “
A Case Study on Thermo-Hydraulic Performance of Jet Plate Solar Air Heater Using Response Surface Methodology
,”
Case Stud. Therm. Eng.
,
34
, p.
101983
.
12.
Bezbaruah
,
P. J.
,
Das
,
R. S.
, and
Sarkar
,
B. K.
,
2021
, “
Experimental and Numerical Analysis of Solar Air Heater Accoutered With Modified Conical Vortex Generators in a Staggered Fashion
,”
Renewable Energy
,
180
, pp.
109
131
.
13.
MesgarPour
,
M.
,
Heydari
,
A.
, and
Wongwises
,
S.
,
2021
, “
Geometry Optimization of Double Pass Solar Air Heater With Helical Flow Path
,”
Sol. Energy
,
213
, pp.
67
80
.
14.
Ansari
,
M.
, and
Bazargan
,
M.
,
2018
, “
Optimization of Flat Plate Solar Air Heaters With Ribbed Surfaces
,”
Appl. Therm. Eng.
,
136
, pp.
356
363
.
15.
Dezan
,
D. J.
,
Rocha
,
A. D.
, and
Ferreira
,
W. G.
,
2020
, “
Parametric Sensitivity Analysis and Optimisation of a Solar Air Heater With Multiple Rows of Longitudinal Vortex Generators
,”
Appl. Energy
,
263
, p.
114556
.
16.
Sharma
,
S.
,
Das
,
R. K.
, and
Kulkarni
,
K.
,
2024
, “
Parametric Optimization of Solar Air Heater Having Sine Wave Baffles as Turbulators
,”
Exp. Heat Transfer
,
37
(
2
), pp.
182
207
.
17.
Ke
,
Z.
,
Chen
,
C.-L.
,
Li
,
K.
, and
Wang
,
S.
,
2020
, “
Enhancement of Heat Transfer by Out-of-Phase Self-Vibration Through Fluid Structure Interaction
,”
J. Enhanced Heat Transfer
,
27
(
7
), pp.
643
663
.
18.
Kumar
,
R.
,
Goel
,
V.
,
Singh
,
P.
,
Saxena
,
A.
,
Kashyap
,
A. S.
, and
Rai
,
A.
,
2019
, “
Performance Evaluation and Optimization of Solar Assisted Air Heater With Discrete Multiple Arc Shaped Ribs
,”
J. Energy Storage
,
26
(
6
), p.
100978
.
19.
Mahto
,
P. K.
,
Das
,
P. P.
,
Diyaley
,
S.
, and
Kundu
,
B.
,
2024
, “
Parametric Optimization of Solar Air Heaters With Dimples on Absorber Plates Using Metaheuristic Approaches
,”
Appl. Therm. Eng.
,
242
(
11
), p.
122537
.
20.
Standard
,
A.
,
1977
, “
Methods of Testing to Determine the Thermal Performance of Solar Collectors
,”
Am. Soc. Heating
,
110
(
2
), pp.
77
93
.
21.
Matsson
,
J. E.
,
2023
,
An Introduction to Ansys Fluent 2023
,
Sdc Publications
,
United States
.
22.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.
23.
Blasius
,
H.
,
1950
,
The Boundary Layers in Fluids With Little Friction
,
National Advisory Committee for Aeronautics
.
You do not currently have access to this content.