Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Present energy consumption and environmental conditions have motivated researchers to explore renewable and alternative energy sources for cooking. Biohythane is a renewable fuel, that can be prepared by purifying biomethane and biohydrogen along with CO2, generated from the anaerobic digestion of biological sources like food waste and cow dung. The current research aims to analyze the combustion performances of biohythane in a double-layered porous radiant burner (PRB) made of silicon carbide and ceramic matrix. The experiment was conducted in the PRB by varying the input fuel range (thermal load) of 200–400 kW/m2, and the biohydrogen percentage of 5–20 in the biohythane for lean fuel–air mixture conditions. It was observed that the PRB performed steadily within the equivalence ratio of 0.55–0.76 and offered radiation efficiency of 41.39–89.93%, CO of 11–84 ppm, and NOX of 4–6.1 ppm. As the biohydrogen percentage increases from 5–20 in the biohythane, the temperature, radiation efficiency, and NOX have increased but the CO has decreased. Further, the temperature and NOX emission have increased due to the increase in thermal load and equivalence ratio, but the CO emission has increased with the increase in thermal load only and decreased due to the increase in equivalence ratio in the PRB. Moreover, the radiation efficiency has increased due to the increase in equivalence ratio only. Overall, the PRB offers efficient combustion of biohythane in the range of a low fuel–air combination.

References

1.
IEA
,
2023
,
World Energy Outlook 2023
,
IEA
,
Paris
. https://www.iea.org/reports/world-energy-outlook-2023
2.
Abe
,
J. O.
,
Popoola
,
A. P. I.
,
Ajenifuja
,
E.
, and
Popoola
,
O. M.
,
2019
, “
Hydrogen Energy, Economy and Storage: Review and Recommendation
,”
Int. J. Hydrogen Energy
,
44
(
29
), pp.
15072
15086
.
3.
Pashchenko
,
D.
,
2018
, “
First Law Energy Analysis of Thermochemical Waste-Heat Recuperation by Steam Methane Reforming
,”
Energy
,
143
, pp.
478
487
.
4.
Ormaechea
,
P.
,
Castrillón
,
L.
,
Suárez-Peña
,
B.
,
Megido
,
L.
,
Fernández-Nava
,
Y.
,
Negral
,
L.
,
Marañón
,
E.
, and
Rodríguez-Iglesias
,
J.
,
2018
, “
Enhancement of Biogas Production From Cattle Manure Pretreated and/or Co-Digested at Pilot-Plant Scale Characterization by SEM
,”
Renewable Energy
,
126
, pp.
897
904
.
5.
Zhao
,
Y.
,
Hickey
,
B.
,
Srivastava
,
S.
,
Smirnov
,
V.
, and
McDonell
,
V.
,
2022
, “
Decarbonized Combustion Performance of a Radiant Mesh Burner Operating on Pipeline Natural Gas Mixed With Hydrogen
,”
Int. J. Hydrogen Energy
,
47
(
42
), pp.
18551
18565
.
6.
Chen
,
Z.
,
Qin
,
C.
, and
Duan
,
P.
,
2018
, “
Lifted Flame Property and Interchangeability of Natural Gas on Partially Premixed Gas Burners
,”
Case Studies in Ther. Eng.
,
12
, pp.
333
339
.
7.
Zhang
,
Y.
,
Qin
,
C.
,
Xing
,
H.
, and
Liu
,
P.
,
2013
, “
Experimental Research on Performance Response of Domestic Gas Cookers to Variable Natural Gas Constituents
,”
J. Nat. Gas Sci. Eng.
,
10
, pp.
41
50
.
8.
Zhang
,
Y.
,
Gao
,
W.
,
Yu
,
Y.
,
Wang
,
M.
, and
Chen
,
C.
,
2016
, “
Primary Air Ratio Change and Gas Interchangeability Index Correct for Domestic Gas Cooker Burning Multi-Source Natural Gases
,”
J. Nat. Gas Sci. Eng.
,
35
, pp.
276
282
.
9.
Öney
,
F.
,
Veziro
,
T. N.
, and
Dülger
,
Z.
,
1994
, “
Evaluation of Pipeline Transportation of Hydrogen and Natural Gas Mixtures
,”
Int. J. Hydrogen Energy
,
19
(
10
), pp.
813
822
.
10.
Jones
,
D. R.
,
Al-Masry
,
W. A.
, and
Dunnill
,
C. W.
,
2018
, “
Hydrogen-Enriched Natural Gas as a Domestic Fuel: An Analysis Based on Flash-Back and Blow-off Limits for Domestic Natural Gas Appliances Within the UK
,”
Sustainable Energy & Fuels
,
2
(
4
), pp.
710
723
.
11.
Zhao
,
Y.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2019
, “
Experimental Assessment of the Combustion Performance of an Oven Burner Operated on Pipeline Natural Gas Mixed With Hydrogen
,”
Int. J. Hydrogen Energy
,
44
(
47
), pp.
26049
26062
.
12.
Haeseldonckx
,
D.
, and
D’haeseleer
,
W.
,
2007
, “
The Use of the Natural-Gas Pipeline Infrastructure for Hydrogen Transport in a Changing Market Structure
,”
Int. J. Hydrogen Energy
,
32
(
10–11
), pp.
1381
1386
.
13.
Zhao
,
Y.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2019
, “
Influence of Hydrogen Addition to Pipeline Natural Gas on the Combustion Performance of a Cooktop Burner
,”
Int. J. Hydrogen Energy
,
44
(
23
), pp.
12239
12253
.
14.
Timmerberg
,
S.
, and
Kaltschmitt
,
M.
,
2019
, “
Hydrogen From Renewables: Supply From North Africa to Central Europe as Blend in Existing Pipelines–Potentials and Costs
,”
Appl. Energy
,
237
, pp.
795
809
.
15.
Mishra
,
N. K.
,
Mishra
,
S. C.
, and
Muthukumar
,
P.
,
2015
, “
Performance Characterization of a Medium-Scale Liquefied Petroleum Gas Cooking Stove With a Two-Layer Porous Radiant Burner
,”
Appl. Therm. Eng.
,
89
, pp.
44
50
.
16.
Pantangi
,
V. K.
,
Mishra
,
S. C.
,
Muthukumar
,
P.
, and
Reddy
,
R.
,
2011
, “
Studies on Porous Radiant Burners for LPG (Liquefied Petroleum Gas) Cooking Applications
,”
Energy
,
36
(
10
), pp.
6074
6080
.
17.
Mishra
,
N. K.
, and
Muthukumar
,
P.
,
2018
, “
Development and Testing of Energy Efficient and Environment Friendly Porous Radiant Burner Operating on Liquefied Petroleum Gas
,”
Appl. Therm. Eng.
,
129
, pp.
482
489
.
18.
Weinberg
,
F. J.
,
1971
, “
Combustion Temperatures: The Future?
,”
Nature
,
233
(
5317
), pp.
239
241
.
19.
Huang
,
R.
,
Cheng
,
L.
,
Qiu
,
K.
,
Zheng
,
C.
, and
Luo
,
Z.
,
2016
, “
Low-Calorific Gas Combustion in a Two-Layer Porous Burner
,”
Energy Fuels
,
30
(
2
), pp.
1364
1374
.
20.
Francisco
,
R. W.
, Jr
,
Rua
,
F.
,
Costa
,
M.
,
Catapan
,
R. C.
, and
Oliveira
,
A. A. M.
,
2010
, “
On the Combustion of Hydrogen-Rich Gaseous Fuels With Low Calorific Value in a Porous Burner
,”
Energy Fuels
,
24
(
2
), pp.
880
887
.
21.
Francisco
,
R. W.
, Jr
,
Costa
,
M.
,
Catapan
,
R. C.
, and
Oliveira
,
A. A. M.
,
2013
, “
Combustion of Hydrogen Rich Gaseous Fuels With Low Calorific Value in a Porous Burner Placed in a Confined Heated Environment
,”
Exp. Therm. Fluid. Sci.
,
45
, pp.
102
109
.
22.
Alavandi
,
S. K.
, and
Agrawal
,
A. K.
,
2008
, “
Experimental Study of Combustion of Hydrogen–Syngas/Methane Fuel Mixtures in a Porous Burner
,”
Int. J. Hydrogen Energy
,
33
(
4
), pp.
1407
1415
.
23.
Samiran
,
N. A.
,
Ng
,
J. H.
,
Mohd Jaafar
,
M. N.
,
Valera-Medina
,
A.
, and
Chong
,
C. T.
,
2016
, “
H2-Rich Syngas Strategy to Reduce NOx and CO Emissions and Improve Stability Limits Under Premixed Swirl Combustion Mode
,”
Int. J. Hydrogen Energy
,
41
(
42
), pp.
19243
19255
.
24.
Ouimette
,
P.
, and
Seers
,
P.
,
2009
, “
NOx Emission Characteristics of Partially Premixed Laminar Flames of H2/CO/CO2 Mixtures
,”
Int. J. Hydrogen Energy
,
34
(
23
), pp.
9603
9610
.
25.
Lee
,
M. C.
,
Seo
,
S. B.
,
Chung
,
J. H.
,
Kim
,
S. M.
,
Joo
,
Y. J.
, and
Ahn
,
D. H.
,
2010
, “
Gas Turbine Combustion Performance Test of Hydrogen and Carbon Monoxide Synthetic Gas
,”
Fuel
,
89
(
7
), pp.
1485
1491
.
26.
Watson
,
G. M.
,
Munzar
,
J. D.
, and
Bergthorson
,
J. M.
,
2014
, “
NO Formation in Model Syngas and Biogas Blends
,”
Fuel
,
124
, pp.
113
124
.
27.
Qian
,
P.
,
Liu
,
M.
,
Li
,
X.
,
Xie
,
F.
,
Huang
,
Z.
,
Luo
,
C.
, and
Zhu
,
X.
,
2020
, “
Combustion Characteristics and Radiation Performance of Premixed Hydrogen/Air Combustion in a Mesoscale Divergent Porous Media Combustor
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
5002
5013
.
28.
Zangeneh
,
V.
, and
Alipoor
,
A.
,
2021
, “
Stability Study of Hydrogen-Air Flame in a Conical Porous Burner
,”
Energy
,
215
, p.
119140
.
29.
Arrieta
,
C. E.
,
García
,
A. M.
, and
Amell
,
A. A.
,
2017
, “
Experimental Study of the Combustion of Natural Gas and High-Hydrogen Content Syngases in a Radiant Porous Media Burner
,”
Int. J. Hydrogen Energy
,
42
(
17
), pp.
12669
12680
.
30.
Maznoy
,
A.
,
Pichugin
,
N.
,
Yakovlev
,
I.
,
Fursenko
,
R.
,
Petrov
,
D.
, and
Shy
,
S. S.
,
2021
, “
Fuel Interchangeability for Lean Premixed Combustion in Cylindrical Radiant Burner Operated in the Internal Combustion Mode
,”
Appl. Therm. Eng.
,
186
, p.
115997
.
31.
Gauthier
,
S.
,
Lebas
,
E.
, and
Baillis
,
D.
,
2007
, “
SFGP 2007-Natural Gas/Hydrogen Mixture Combustion in a Porous Radiant Burner
,”
Int. J. Chem. React. Eng.
,
5
(
1
), pp.
1
10
.
32.
Habib
,
R.
,
Yadollahi
,
B.
,
Saeed
,
A.
,
Doranehgard
,
M. H.
, and
Karimi
,
N.
,
2021
, “
On the Response of Ultralean Combustion of CH4/H2 Blends in a Porous Burner to Fluctuations in Fuel Flow—An Experimental Investigation
,”
Energy Fuels
,
35
(
10
), pp.
8909
8921
.
33.
Deheri
,
C.
, and
Acharya
,
S. K.
,
2020
, “
An Experimental Approach to Produce Hydrogen and Methane From Food Waste Using Catalyst
,”
Int. J. Hydrogen Energy
,
45
(
35
), pp.
17250
17259
.
34.
Deheri
,
C.
, and
Acharya
,
S. K.
,
2021
, “
Effect of Calcium Peroxide and Sodium Hydroxide on Hydrogen and Methane Generation During the Co-Digestion of Food Waste and Sow Dung
,”
J. Cleaner Prod.
,
279
, p.
123901
.
35.
Deheri
,
C.
, and
Acharya
,
S. K.
,
2022
, “
Purified Biohythane (Biohydrogen+Biomethane) Production From Food Waste Using CaO2+CaCO3 and NaOH as Additives
,”
Int. J. Hydrogen Energy
,
47
(
5
), pp.
2862
2873
.
36.
Deheri
,
C.
, and
Acharya
,
S. K.
,
2023
, “
Experimental Investigation of Biohythane Performance on Thermal Barrier-Coated Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
011702
.
37.
Sun
,
M.
,
Huang
,
X.
,
Hu
,
Y.
, and
Lyu
,
S.
,
2022
, “
Effects on the Performance of Domestic Gas Appliances Operated on Natural Gas Mixed With Hydrogen
,”
Energy
,
244
, p.
122557
.
38.
Devi
,
S.
,
Sahoo
,
N.
, and
Muthukumar
,
P.
,
2020
, “
Experimental Studies on Biogas Combustion in a Novel Double Layer Inert Porous Radiant Burner
,”
Renewable Energy
,
149
, pp.
1040
1052
.
39.
Dash
,
K.
, and
Samantaray
,
S.
,
2022
, “
Lean Premixed Combustion of Raw Biogas Interchangeability in a Porous Radiant Burner Operated in the Submerged Mode
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
9
), p.
091015
.
40.
Gao
,
H. B.
,
Feng
,
X. B.
, and
Qu
,
Z. G.
,
2017
, “
Combustion in a Hybrid Porous Burner Packed With Alumina Pellets and Silicon Carbide Foams With a Gap
,”
J. Energy Eng.
,
143
(
5
), p.
04017032
.
41.
Dash
,
K.
,
Acharya
,
S. K.
, and
Samantaray
,
S.
,
2024
, “
Combustion of Raw Biogas/Hot Air in a Porous Radiant Burner and Performance Prediction Using a Machine Learning Algorithm
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
6
), p.
064502
.
42.
Kline
,
S. J.
,
1963
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
. https://cir.nii.ac.jp/crid/1572261549103675008
43.
Zhen
,
H. S.
,
Cheung
,
C. S.
,
Leung
,
C. W.
, and
Choy
,
Y. S.
,
2012
, “
Effects of Hydrogen Concentration on the Emission and Heat Transfer of a Premixed LPG-Hydrogen Flame
,”
Int. J. Hydrogen Energy
,
37
(
7
), pp.
6097
6105
.
44.
Muthukumar
,
P.
, and
Shyamkumar
,
P. I.
,
2013
, “
Development of Novel Porous Radiant Burners for LPG Cooking Applications
,”
Fuel
,
112
, pp.
562
566
.
45.
Keramiotis
,
C.
,
Katoufa
,
M.
,
Vourliotakis
,
G.
,
Hatziapostolou
,
A.
, and
Founti
,
M. A.
,
2015
, “
Experimental Investigation of a Radiant Porous Burner Performance With Simulated Natural Gas, Biogas and Synthesis Gas Fuel Blends
,”
Fuel
,
158
, pp.
835
842
.
You do not currently have access to this content.