Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Joule–Thomson (J–T) refrigerators or J–T cryocoolers are extensively used in many low-temperature applications. J–T refrigerators operating with nitrogen–hydrocarbon (N2-HC) refrigerant mixtures offer several advantages, such as low operating pressures (<20 bar), high exergy efficiency, no moving parts in the cold section, and low cost. The cooling power or cooling capacity of the J–T refrigerator depends on the hardware used as well as the refrigerant composition. The proposed work focuses on estimating the cooling capacity of a mixed refrigerant J–T (MRJ–T) refrigerator of the given hardware and specified refrigerant. An iterative steady-state full-cycle simulation procedure has been presented in this work to simulate the complete system and estimate the cooling capacity, taking into account the possibility of choking of the expansion capillary. Some of the results have been validated against experimental results of an MRJ–T refrigerator available in the open literature. Details of the simulation model and the results of our studies on the prediction of stable operating range, maximum cooling capacity, the effect of heat exchanger geometry, expansion capillary geometry, mixture composition, and choking of the refrigerant mixture on the performance of an MRJ–T refrigerator are presented in this article.

References

1.
Venkatarathnam
,
G.
,
2008
,
Cryogenic Mixed Refrigerant Processes
,
Springer
,
New York
.
2.
Narasimhan
,
L.
, and
Venkatarathnam
,
G.
,
2013
, “
Studies on the Performance of a Small Reciprocating Compressor With Different Nitrogen-Hydrocarbon Mixtures
,”
Int. J. Refrig.
,
36
(
8
), pp.
2091
2096
.
3.
Little
,
W. A.
, and
Palo
,
A. C.
,
1997
, “
Method for Efficient Counter-Current Heat Exchange Using Optimized Mixtures, United States Patent
,” US005644502A, United States Patent.
4.
Boiarski
,
M.
,
Khatri
,
A.
, and
Kovalenko
,
V.
,
1999
, “
Design Optimization of the Throttle-Cycle Cooler With Mixed Refrigerant
,”
Cryocoolers
,
10
, pp.
457
465
.
5.
Keppler
,
F.
,
Nellis
,
G.
, and
Klein
,
S. A.
,
2004
, “
Optimization of the Composition of a Gas Mixture in a Joule–Thomson Cycle
,”
HVAC&R Res.
,
10
(
2
), pp.
213
230
.
6.
Rogala
,
Z.
,
2021
, “
Composition Optimization Method for Mixed Refrigerant MR JT Cryocooler
,”
Cryogenics (Guildf)
,
113
, p.
103223
.
7.
Bychkov
,
E. G.
,
Makarov
,
B. A.
, and
Zherdev
,
A. A.
,
2019
, “
Development of a Method of Determining the Component Composition of the Working Fluid of Low-Temperature Throttling Refrigeration Machines Operating With Multicomponent Mixtures of Coolants
,”
Chem. Pet. Eng.
,
54
(
9–10
), pp.
751
759
.
8.
Wang
,
Y.
,
Zhao
,
Y.
,
Sun
,
Y.
,
Wang
,
H.
, and
Gong
,
M. Q.
,
2023
, “
Optimization Method for Mixed Refrigerants in Joule Thomson Refrigerators With Fixed-Temperature Heat Loads
,”
Appl. Therm. Eng.
,
233
, p.
121198
.
9.
Gong
,
M. Q.
,
Wu
,
J. F.
,
Luo
,
E. C.
,
Qi
,
Y. F.
,
Hu
,
Q. G.
, and
Zhou
,
Y.
,
2002
, “
Study on the Overall Heat Transfer Coefficient for the Tube-in-Tube Heat Exchanger Used in Mixed-Gases Coolers
,”
AIP Conf. Proc.
,
613
(
1
), pp.
1483
1490
.
10.
Gupta
,
P.
, and
Atrey
,
M. D.
,
2000
, “
Performance Evaluation of Counter Flow Heat Exchangers Considering the Effect of Heat in Leak and Longitudinal Conduction for Low-Temperature Applications
,”
Cryogenics (Guildf)
,
40
(
7
), pp.
469
474
.
11.
Ardhapurkar
,
P. M.
,
Sridharan
,
A.
, and
Atrey
,
M. D.
,
2014
, “
Performance Evaluation of Heat Exchanger for Mixed Refrigerant J–T Cryocooler
,”
Cryogenics (Guildf)
,
63
, pp.
49
56
.
12.
Satya Meher
,
R.
, and
Venkatarathnam
,
G.
,
2018
, “
Estimation of Performance of a J–T Refrigerators Operating With Nitrogen-Hydrocarbon Mixtures and a Coiled Tubes-in-Tube Heat Exchanger
,”
Cryogenics (Guildf)
,
92
(
Sept. 2017
), pp.
27
35
.
13.
Kruthiventi
,
S. H.
, and
Venkatarathnam
,
G.
,
2020
, “
Performance of J–T Refrigerators Operating With Mixtures and Coiled Wire-Finned Heat Exchangers
,”
J. Therm. Anal. Calorim.
,
141
(
6
), pp.
2169
2175
.
14.
Gomse
,
D.
,
Kochenburger
,
T. M.
, and
Grohmann
,
S.
,
2018
, “
Modeling of Two-Phase Heat Exchangers With Zeotropic Fluid Mixtures
,”
ASME J. Heat Transfer
,
140
(
5
), p.
051801
.
15.
Gomse
,
D.
, and
Grohmann
,
S.
,
2019
, “
Heat Transfer and Pressure Drop in the Main Heat Exchanger of a Cryogenic Mixed Refrigerant Cycle
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
502
(
1
), p.
012027
.
16.
Detlor
,
J.
,
Gruenstern
,
R.
,
Pfotenhauer
,
J.
, and
Nellis
,
G.
,
2020
, “
Experimental Validation and Refinement of Mixture Optimization for a Mixed Gas Joule–Thomson Cycle
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
755
(
1
), p.
012019
.
17.
Chen
,
H.
,
Liu
,
Q. S.
,
Liu
,
Y. W.
, and
Gao
,
B.
,
2020
, “
Optimal Design of a Novel Non-Isometric Helically Coiled Recuperator for Joule–Thomson Cryocoolers
,”
Appl. Therm. Eng.
,
167
(
May 2019
), p.
114763
.
18.
Baki
,
M.
,
Okutucu-Özyurt
,
T.
, and
Sert
,
C.
,
2019
, “
Optimization of Joule–Thomson Cryocooler Heat Exchanger Using One-Dimensional Numerical Modeling
,”
Cryogenics (Guildf)
,
104
(
Apr.
), p.
102981
.
19.
Ardhapurkar
,
P. M.
,
Sridharan
,
A.
, and
Atrey
,
M. D.
,
2014
, “
Flow Boiling Heat Transfer Coefficients at Cryogenic Temperatures for Multi-Component Refrigerant Mixtures of Nitrogen-Hydrocarbons
,”
Cryogenics (Guildf)
,
59
, pp.
84
92
.
20.
Little
,
W. A.
,
2008
, “
Heat Transfer Efficiency of Kleemenko Cycle Heat Exchangers
,”
AIP Conf. Proc.
,
985
(
1
), pp.
606
613
.
21.
Barraza
,
R.
,
Nellis
,
G.
,
Klein
,
S.
, and
Reindl
,
D.
,
2015
, “
Description and Validation of the Little Correlation for Boiling Zeotropic Mixtures in Horizontal Tubes From Cryogenic to Room Temperature
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
101
(
1
), p.
012132
.
22.
Barraza
,
R.
,
Nellis
,
G.
,
Klein
,
S.
, and
Reindl
,
D.
,
2016
, “
Measured and Predicted Heat Transfer Coefficients for Boiling Zeotropic Mixed Refrigerants in Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
97
, pp.
683
695
.
23.
Nellis
,
G.
,
Hughes
,
C.
, and
Pfotenhauer
,
J.
,
2005
, “
Heat Transfer Coefficient Measurements for Mixed Gas Working Fluids at Cryogenic Temperatures
,”
Cryogenics
,
45
(
8
), pp.
546
556
.
24.
Wong
,
T. N.
, and
Ooi
,
K. T.
,
1996
, “
Adiabatic Capillary Tube Expansion Devices: A Comparison of the Homogeneous Flow and the Separated Flow Models
,”
Appl. Therm. Eng.
,
16
(
7
), pp.
625
634
.
25.
Wongwises
,
S.
, and
Suchatawut
,
M.
,
2003
, “
A Simulation for Predicting the Refrigerant Flow Characteristics Including Metastable Region in Adiabatic Capillary Tubes
,”
Int. J. Energy Res.
,
27
(
2
), pp.
93
109
.
26.
Fiorelli
,
F.
,
Alberto Silva Huerta
,
A.
, and
De Mattos Silvares
,
O.
,
2002
, “
Experimental Analysis of Refrigerant Mixtures Flow Through Adiabatic Capillary Tubes
,”
Exp. Therm. Fluid Sci.
,
26
(
5
), pp.
499
512
.
27.
Kruthiventi
,
S. H.
, and
Venkatarathnam
,
G.
,
2017
, “
Studies on Capillary Tube Expansion Device Used in J–T Refrigerators Operating With Nitrogen-Hydrocarbon Mixtures
,”
Cryogenics (Guildf)
,
87
, pp.
76
84
.
28.
Lakshmi Narasimhan
,
N.
, and
Venkatarathnam
,
G.
,
2011
, “
Effect of Mixture Composition and Hardware on the Performance of a Single Stage JT Refrigerator
,”
Cryogenics (Guildf)
,
51
(
8
), pp.
446
451
.
29.
Venkatarathnam
,
G.
,
Kumar
,
R.
, and
Krishnapillai
,
S.
,
2022
, “
Optimisation of Flow Paths of Air-Cooled Heat Exchangers
,”
Int. J. Energy Clean Environ.
,
24
(
4
), pp.
53
65
.
30.
Boiarski
,
M.
,
Podtchereniaev
,
O.
, and
Lunin
,
A.
,
2003
, “
Optimal Design and Generalized Performance of Throttle Cycle Coolers Operating With Mixed Refrigerants
,”
21st IIR International Congress of Refrigeration: Serving the Needs of Mankind
,
Washington, DC
,
Aug. 17–22
, pp.
1
8
. https://iifiir.org/en/fridoc/optimal-design-and-generalized-performance-of-throttle-cycle-coolers-21226
31.
Nellis
,
G. F.
,
2003
, “
A Heat Exchanger Model That Includes Axial Conduction, Parasitic Heat Loads, and Property Variations
,”
Cryogenics (Guildf)
,
43
(
9
), pp.
523
538
.
32.
Kroeger
,
P. G.
,
1967
, “
Performance Deterioration in High Effectiveness Heat Exchangers Due to Axial Conduction Effects
,”
Advances in Cryogenic Engineering: Proceedings of the 1966 Cryogenic Engineering Conference University of Colorado Engineering Research Center and Cryogenics Division NBS Institute for Materials Research Boulder
,
Colorado
,
June 13–15
,
Springer US
,
Boston, MA
, pp.
363
372
.
33.
Venkatarathnam
,
G.
,
Aparna
,
K.
, and
Murthy
,
S. S.
,
1995
, “
Influence of Property Variations in the Design of Cryogenic Heat Exchangers
,”
Proceedings of the 2nd ASME ISHMT Conference Heat and Mass Transfer
,
Held Suratkal, India
,
Dec. 26–28
, pp.
719
724
.
34.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
35.
Boyarsky
,
M.
,
Yudin
,
B.
,
Mogorychny
,
V. I.
, and
Larry
,
K.
,
1995
, “
Cryogenic Mixed Gas Refri–Ant for Operation Withintemperature Ranges of 80K–100K
,” USOO5441658A, United States Patent.
36.
Venkatarathnam
,
G.
,
2010
, “
Refrigerant Composition and Process for Preparation Thereof
,” US007722780B2, United States Patent.
37.
V.D.I
,
2010
,
VDI Heat Atlas
,
Berlin Heidelberg
,
Springer
.
38.
Kruthiventi
,
H. S. S.
,
2017
, “
Studies on Coiled Wire Finned Tubes-in-Tube Heat Exchangers and Expansion Capillary Used in Mixed Refrigerant J–T Refrigerators
,”
Ph.D. thesis
,
Indian Institute of Technology, Madras
,
Chennai
.
39.
Rogers
,
G. F. C.
, and
Mayhew
,
Y. R.
,
1964
, “
Heat Transfer and Pressure Loss in Helically Coiled Tubes With Turbulent Flow
,”
Heat Mass Transfer
,
7
(
11
), pp.
1207
1216
.
You do not currently have access to this content.