Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study provides extensive research on fluid flow and heat transfer for four-layered ceramic-compact counterflow microchannel heat exchangers (CFMCHE) using CFD-ACE®, a computational fluid dynamics (CFD) package. The goal is to build and expand upon previous studies in this area to identify a more efficient channel shape or cross section for better performance of the microchannel through numerical analysis under the same operating conditions. To develop the methodology for numerical analysis, a three-dimensional (3D) computational model of the CFMCHE was developed and validated with published and experimentally tested results with a percentage difference in outlet temperatures of 3–5% for hot fluids and 6–12% for cold fluids across the entire design of experiments (DoEs). Microchannel heat exchangers (MCHEs) exhibit high heat-transfer rates and area-to-volume ratios, making them suitable for industrial applications. In this study, various design options for channel cross sections in a venturi shape were assessed numerically using a validated methodology in a segmented venturi CFMCHE to enhance performance. The steady-state performance of the Venturi CFMCHE was compared to that of the straight CFMCHE baseline design under the same bucket volume, area, and operating conditions. It was found that the venturi CFMCHE showed a ∼4–9% improvement as compared to the straight CFMCHE, but same time the pumping power was also 15–40% under the same operating conditions. Making the right choice regarding feasibility often involves weighing the pros and cons. The high-power requirements are manageable in terms of the cost of high thermal performance for ground applications, such as power plants, industrial refrigeration, and air-conditioning. However, for aviation, space, and automobiles, weight/power requirements are given more weight than thermal performance. Therefore, the Venturi CFMCHE can be used for ground applications, whereas the straight CFMCHE can be used for aviation, space, and automobile applications. When the Goodness factor is plotted for all configurations for all operating conditions, it is also concluded that an improvement of ∼7.5% is observed in the two design configurations with the Venturi channel (20pc_TOP_BTM_Step and 40pc_BTM_Step) with respect to the straight channel. This implies that these two best designs can be used for all applications over the straight-channel CFMCHE.

References

1.
Sarkar
,
J.
, and
Bhattacharyya
,
S.
,
2021
, “
Application of Graphene and Graphene-Based Materials in Clean Energy-Related Devices Minghui
,”
Arch. Thermodyn.
,
33
(
4
), pp.
23
40
.
2.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
Krieger Publishing Company
.
3.
Radwan
,
A.
, and
Ahmed
,
M.
,
2017
, “
The Influence of Microchannel Heat Sink Configurations on the Performance of Low Concentrator Photovoltaic Systems
,”
Appl. Energy
,
206
, pp.
594
611
.
4.
Hassan
,
I.
,
Phutthavong
,
P.
, and
Abdelgawad
,
M.
,
2004
, “
Microchannel Heat Sinks: An Overviw of the State-of-the-Art
,”
Microscale Thermophysical Eng.
,
8
, pp.
183
205
.
5.
Copeland
,
D.
,
Takahira
,
H.
, and
Nakayama
,
W.
,
1995
, “
Manifold Microchannel Heat Sinks: Theory and Experiment
,”
ASME, EEP
,
10
(
2
), pp.
829
834
.
6.
Prasher
,
R.
, and
Chang
,
J.-Y.
,
2008
, “
Cooling of Electronic Chips Using Microchannel and Micro-Pin Fin Heat Exchangers
,”
Proceedings of ASME 6th International Conference on Nanochannels, Microchannels, and Minichannels
,
Darmstadt, Germany
,
June 23–25
, pp.
1881
1887
.
7.
Marchionni
,
M.
,
Bianchi
,
G.
, and
Tassou
,
S. A.
,
2020
, “
Review of Supercritical Carbon Dioxide (SCO2) Technologies for High-Grade Waste Heat to Power Conversion
,”
SN Appl. Sci.
,
2
(
4
), pp.
1
13
.
8.
Dostal
,
V.
,
2004
, “
A Super Critical Carbon Dioxide Cycle
,”
Ph.D. dissertation
,
Massachusetts Institute of Technology
,
Massachusetts, MA
.
9.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.
10.
Qian
,
S.
,
Shinan
,
C.
,
Mengjie
,
S.
,
Yuanyuan
,
Z.
, and
Chaobin
,
D.
,
2019
, “
An Experimental Study on the Heat Transfer Performance of a Loop Heat Pipe System With Ethanol-Water Mixture as Working Fluid for Aircraft Anti-Icing
,”
Int. J. Heat Mass Transfer
,
139
, pp.
280
292
.
11.
Deng
,
D.
,
Zeng
,
L.
, and
Sun
,
W.
,
2021
, “
A Review on Flow Boiling Enhancement and Fabrication of Enhanced Microchannels of Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
175
, p.
121332
.
12.
Al-Zaidi
,
A. H.
,
Mahmoud
,
M. M.
, and
Karayiannis
,
T. G.
,
2021
, “
Effect of Aspect Ratio on Flow Boiling Characteristics in Microchannels
,”
Int. J. Heat Mass Transfer
,
164
, p.
120587
.
13.
Hasan
,
M. I.
,
Rageb
,
A. A.
,
Yaghoubi
,
M.
, and
Homayoni
,
H.
,
2009
, “
Influence of Channel Geometry on the Performance of a Counter Flow Microchannel Heat Exchanger
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1607
1618
.
14.
Alm
,
B.
,
Imke
,
U.
,
Knitter
,
R.
,
Schygulla
,
U.
, and
Zimmermann
,
S.
,
2008
, “
Testing and Simulation of Ceramic Micro Heat Exchangers
,”
Chem. Eng. J.
,
135
(
S1
), pp.
79
84
.
15.
Singh
,
P. K.
,
Harikrishna
,
P. V.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2012
, “
Experimental and Numerical Investigation Into the Hydrodynamics of Nanofluids in Microchannels
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
174
186
.
16.
Tokit
,
E. M.
,
Mohammed
,
H. A.
, and
Yusoff
,
M. Z.
,
2012
, “
Thermal Performance of Optimized Interrupted Microchannel Heat Sink (IMCHS) Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1595
1604
.
17.
Ranganayakulu
,
C.
,
Seetharamu
,
K. N.
, and
Sreevatsan
,
K. V.
,
1997
, “
The Effects of Longitudinal Heat Conduction in Compact Plate-Fin and Tube-Fin Heat Exchangers Using a Finite Element Method
,”
Int. J. Heat Mass Transfer
,
40
(
6
), pp.
1261
1277
.
18.
Kays
,
W. M.
,
1950
, “
Loss Coefficients for Abrupt Changes in Flow Cross Section With Low Reynolds Number Flow in Single and Multiple-Tube Systems
,”
ASME J. Fluids Eng.
,
72
(
8
), pp.
1067
1074
.
19.
McDonald
,
A. G.
, and
Magande
,
H. L.
,
2012
,
Fundamentals of Heat Exchanger Design
,
John Wiley & Sons
,
New York
.
20.
Takeuchi
,
Y.
,
Park
,
C.
,
Noborio
,
K.
,
Yamamoto
,
Y.
, and
Konishi
,
S.
,
2010
, “
Heat Transfer in SiC Compact Heat Exchanger
,”
Fusion Eng. Des.
,
85
(
7–9
), pp.
1266
1270
.
21.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.
22.
Uday Kumar
,
A.
,
Javed
,
A.
, and
Dubey
,
S. K.
,
2018
, “
Material Selection for Microchannel Heatsink: Conjugate Heat Transfer Simulation
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
346
, p.
012024
.
23.
Sheth
,
R. B.
,
Stephan
,
R. A.
, and
Hawkins-Reynolds
,
E.
,
2011
, “
Performance Characterization of a Microchannel Liquid/Liquid Heat Exchanger Throughout an Extended Duration Life Test
,”
Proceedings of the 41st International Conference on Environmental Systems
,
Portland, OR
,
July 17–21
.
24.
Kee
,
R. J.
,
Almand
,
B. B.
,
Blasi
,
J. M.
,
Rosen
,
B. L.
,
Hartmann
,
M.
,
Sullivan
,
N. P.
,
Zhu
,
H.
, et al
,
2011
, “
The Design, Fabrication, and Evaluation of a Ceramic Counter-Flow Microchannel Heat Exchanger
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
2004
2012
.
25.
Ionescu
,
V.
, and
Neagu
,
A.-A.
,
2016
, “
Finite Element Method Analysis of a MEMS-Based Heat Exchanger With Different Channel Geometries
,”
Energy Procedia
,
112
, pp.
158
165
.
26.
Dang
,
T.
,
Teng
,
J. T.
, and
Chu
,
J. C.
,
2010
, “
A Study on the Simulation and Experiment of a Microchannel Counter-Flow Heat Exchanger
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2163
2172
.
27.
Jegan
,
C. D.
, and
Azhagesan
,
N.
,
2018
, “
A Novel Investigation of Heat Transfer Characteristics in Rifled Tubes
,”
Heat Mass Transfer
,
54
(
5
), pp.
1503
1509
.
28.
Shakir
,
A. M.
,
Mohammed
,
A. K.
, and
Hasan
,
M. I.
,
2011
, “
Numerical Investigation of Counter Flow Microchannel Heat Exchanger With Slip Flow Heat Transfer
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2132
2140
.
29.
Ramana Murthy
,
K. V.
,
Ranganayakulu
,
C.
, and
Ashok Babu
,
T. P.
,
2017
, “
Condensation Heat Transfer and Pressure Drop of R-134a Saturated Vapour Inside a Brazed Compact Plate Fin Heat Exchanger With Serrated Fin
,”
Heat Mass Transfer
,
53
(
1
), pp.
331
341
.
30.
Chennu
,
R.
,
2018
, “
Numerical Analysis of Compact Plate-Fin Heat Exchangers for Aerospace Applications
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
2
), pp.
395
412
.
31.
Kumar
,
R. A.
,
Kavitha
,
M.
,
Kumar
,
P. M.
, and
Adhithya
,
S. S.
,
2020
, “
Effect of Channel Shapes on Fluid Flow and Heat Transfer in Microchannel—A Numerical Study
,”
AIP Conf. Proc.
,
2283
, p.
020011
.
32.
Kumar
,
K.
,
Sarkar
,
J.
, and
Mondal
,
S. S.
,
2024
, “
Multi-Scale-Multi-Domain Simulation of Novel Microchannel-Integrated Cylindrical Li-Ion Battery Thermal Management: Nanoparticle Shape Effect
,”
J. Energy Storage
,
84
, p.
110824
.
33.
Wen
,
H.
,
Liang
,
Z.
,
Luo
,
Q.
,
Wu
,
C.
, and
Wang
,
C.
,
2023
, “
Heat Transfer Performance Study of Microchannel Heat Sink With Composite Secondary Channels
,”
Int. Commun. Heat Mass Transfer
,
143
, p.
106718
.
34.
Manda
,
U.
,
Mazumdar
,
S.
, and
Peles
,
Y.
,
2024
, “
Effects of Cross-Sectional Shape on Flow and Heat Transfer of the Laminar Flow of Supercritical Carbon Dioxide Inside Horizontal Microchannels
,”
Int. J. Therm. Sci.
,
201
, p.
108992
.
35.
Liu
,
L.
,
Zhang
,
L.
,
Zhang
,
X.
,
Xu
,
H.
,
Zhang
,
H.
,
Zhou
,
S.
, and
Cao
,
Y.
,
2024
, “
Thermohydraulic Performance of the Microchannel Heat Sinks With Three Types of Double-Layered Staggered Grooves
,”
Int. J. Therm. Sci.
,
201
, p.
109032
.
36.
Fan
,
Y.
,
Chen
,
C.
,
Fu
,
R.
,
Wang
,
Q.
,
Cao
,
C.
,
Chen
,
X.
,
Su
,
M.
, et al
,
2024
, “
Heat Transfer Performance Study of Fluid Rotating Microchannel Heat Sink
,”
Case Studies Ther. Eng.
,
58
, p.
104390
.
37.
Pandey
,
V. K.
,
Negi
,
V. P. S.
, and
Ranganayakulu
,
C.
,
2024
, “
An In-Depth Comparison of Straight and Wavy Microchannel Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
5
), p.
051007
.
38.
Jiji
,
L. M.
,
2007
,
Heat Convection
,
Springer Science & Business Media
.
You do not currently have access to this content.