Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This experimental study aimed to investigate the effect of a newly shaped condenser on the thermal performance and operational parameters of a horizontally rotating wickless heat pipe. The new condenser shape has been developed based on assessing the effect of conical external ends and inner tapered wall condensers. The newly developed condenser configuration implies an external conical end of 60 deg and an inner tapered walls condenser of 3 deg. The heat pipe was subjected to a consistent rotational speed of 1500 rpm while being exposed to different heat loads, ranging from 25 to 200 W. Various filling ratios of water, from 5% to 55% of the total inner volume of the heat pipe, have been tested at rotation speeds of 750, 1000, and 1500 rpm. The results indicated that the heat pipe with the advanced condenser has a superior performance over the ones with the plain condenser by 46.75%, the conical end condenser by about 31.15%, and the tapered condenser by about 7.54%, on average over the tested heat loads from 25 to 200 W. The filling ratio of 25% achieved better performance than the other tested filling ratios as the effective thermal resistance of the heat pipe decreased by 3.1–10.1%, 2.8–19.5%, and 8.9–24.8% for rotational speeds 750, 1000, and 1500 rpm, respectively.

References

1.
Shukla
,
K.
,
2015
, “
Heat Pipe for Aerospace Applications—An Overview
,”
J. Electron. Cool. Therm. Control
,
5
(
1
), pp.
1
14
.
2.
Qu
,
Y.
,
Wang
,
S.
, and
Tian
,
Y.
,
2018
, “
A Review of Thermal Performance in Multiple Evaporators Loop Heat Pipe
,”
Appl. Therm. Eng.
,
143
, pp.
209
224
.
3.
Faghri
,
A.
,
2014
, “
Heat Pipes: Review, Opportunities, and Challenges
,”
Front. Heat Pipes
,
5
(
1
), p.
1
.
4.
Mueller
,
C.
, and
Tsvetkov
,
P.
,
2021
, “
A Review of Heat-Pipe Modeling and Simulation Approaches in Nuclear Systems Design and Analysis
,”
J. Ann. Nucl. Energy
,
160
(4), p.
108393
.
5.
Jouhara
,
H.
,
Chauhan
,
A.
,
Nannou
,
T.
,
Almahmoud
,
S.
,
Delpech
,
B.
, and
Wrobel
,
L. C.
,
2017
, “
Heat Pipe Based Systems—Advances and Applications
,”
Energy J.
,
128
, pp.
729
754
.
6.
Dunn
,
P. D.
,
Kew
,
P. A.
, and
McGlen
,
R. J.
,
2014
,
Heat Pipes—Theory, Design, and Applications
, 6th ed.,
Elsevier
,
UK
.
7.
Hassan
,
H.
, and
Harmand
,
S.
,
2013
, “
Effect of Cu-Water Nanofluid on the Heat Transfer by Rotating Heat Pipe
,”
11th International Conference of Numerical Analysis and Applied Mathematics
(ICNAAM 2013), Rhodes, Greece, September, Vol.
1558
, pp.
2076
2079
.
8.
Song
,
F.
,
Ewing
,
D.
, and
Ching
,
C.
,
2004
, “
Experimental Investigation on the Heat Transfer Characteristics of Axial Rotating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
47
(
22
), pp.
4721
4731
.
9.
Song
,
F.
,
Ewing
,
D.
, and
Ching
,
C.
,
2008
, “
Heat Transfer in the Evaporator Section of Moderate-Speed Rotating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1542
1550
.
10.
Bertossi
,
R.
,
Guilhem
,
N.
,
Ayel
,
V.
,
Romestant
,
C.
, and
Bertin
,
Y.
,
2012
, “
Modeling of Heat and Mass Transfer in the Liquid Film of Rotating Heat Pipes
,”
Int. J. Therm. Sci.
,
52
(1), pp.
40
49
.
11.
Chang
,
W.
,
Li
,
Y.
,
Fang
,
K.
, and
Zhang
,
F.
,
2020
, “
Numerical Simulation of Two-Phase Flow and Heat Transfer in an Axial Rotating Heat Pipe
,”
IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC 2020)
, Chongqing, China, June, pp.
1332
1336
.
12.
Suparman S.
,
S.
,
Yuliati
,
L.
, and
Choiron
,
M. A.
,
2019
, “
Experiment on Novel Design of Tapered Shape Heat Pipe
,”
IOP Conf. Series: Mater. Sci. Eng.
,
494
, p.
012097
.
13.
Lian
,
W.
, and
Han
,
T.
,
2019
, “
Flow and Heat Transfer in a Rotating Heat Pipe With a Conical Condenser
,”
Int. Commun. Heat Mass Transfer
,
101
, pp.
70
75
.
14.
Wang
,
H.
,
Tang
,
Y.
,
Liu
,
M.
,
Zhu
,
S.
,
Zheng
,
K.
, and
Du
,
X.
,
2023
, “
Experimental Study on Heat Transfer Performance of Axially Rotating Heat Pipe in Steady State
,”
Int. J. Therm. Sci.
,
184
, p.
107975
.
15.
Kamal
,
M. M.
,
Amer
,
I.
, and
Aboelnasr
,
M.
,
2010
, “
Rotating Heat Pipe Performance With Internal Wire Mesh Screens
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
224
(
7
), pp.
993
1005
.
16.
Xie
,
M.
,
Xue
,
Z.
,
Qu
,
W.
, and
Li
,
W.
,
2015
, “
Experimental Investigation of Heat Transfer Performance of Rotating Heat Pipe
,”
Procedia Eng.
,
99
, pp.
746
751
.
17.
Kothare
,
C. B.
,
Raizada
,
K. S.
, and
Panda
,
S.
,
2015
, “
Performance Analysis of Heat Pipe With Different Working Fluid and Fill Ratios
,”
Int. J. Res. Advent Technol.
,
3
(
10
), pp.
34
39
.
18.
Lian
,
W.
,
Chang
,
W.
, and
Xuan
,
Y.
,
2016
, “
Numerical Investigation on Flow and Thermal Features of a Rotating Heat Pipe
,”
Appl. Therm. Eng.
,
101
, pp.
92
100
.
19.
Uddin
,
Z.
,
Harmand
,
S.
, and
Ahmed
,
S.
,
2017
, “
Computational Modeling of Heat Transfer in Rotating Heat Pipes Using Nanofluids: A Numerical Study Using PSO
,”
Int. J. Therm. Sci.
,
112
, pp.
44
54
.
20.
Lian
,
W.
,
Zhu
,
X.
, and
Chang
,
W.
,
2017
, “
Fluid Flow and Heat Transfer in a Rotating Heat Pipe With a Conical Condenser
,”
Proceedings of the Asian Conference on Thermal Sciences, 1st ACTS
,
Jeju Island, South Korea
,
Mar. 26–30
, pp.
1
4
.
21.
Celik
,
M.
,
Paulussen
,
G.
,
Erp
,
D. V.
,
Jong
,
W. D.
, and
Boersma
,
B. J.
,
2018
, “
Transient Modelling of Rotating and Stationary Cylindrical Heat Pipes: An Engineering Model
,”
Energies
,
11
(
3458
), pp.
11
15
.
22.
Nemec
,
P.
,
Čaja
,
A.
, and
Malcho
,
M.
,
2013
, “
Mathematical Model for Heat Transfer Limitations of Heat Pipe
,”
Math. Comput. Model.
57
, pp.
126
136
.
23.
Soliman
,
M. G.
,
2024
, “
Experimental and Numerical Investigation of the Effect of Condenser Design on the Performance of Axially-Rotating Heat Pipes
,”
Ph.D. thesis
,
Helwan University
,
Cairo, Egypt
.
24.
Eidan
,
A. A.
,
Alshukri
,
M. J.
,
Al-fahham
,
M.
,
AlSahlani
,
A.
, and
Abdulridha
,
D. M.
,
2021
, “
Optimizing the Performance of the Air Conditioning System Using an Innovative Heat Pipe Heat Exchanger
,”
Therm. Eng. J.
,
26
, p.
101075
.
25.
Arai
,
T.
,
Kawaji
,
M.
, and
Koito
,
Y.
,
2018
, “
Visualization of Two-Phase Flow in 3d Printed Polycarbonate Pulsating Heat Pipe with Aluminum Substrate
,”
Proceedings of the ASME 2018 16th International Conference on Nano-Channels, Micro-Channels, and Mini-Channels, ICNMM
, p.
V001T02A010
. Paper No. ICNMM2018-7677
26.
Naresh
,
Y.
, and
Balaji
,
C.
,
2018
, “
Thermal Performance of an Internally Fnned Two Phase Closed Thermosyphon With Refrigerant R134a: A Combined Experimental and Numerical Study
,”
Int. J. Therm. Sci.
,
126
, pp.
281
293
.
27.
Fadhl
,
B.
,
Wrobel
,
L. C.
, and
Jouhara
,
H.
,
2013
, “
Numerical Modeling of the Temperature Distribution in a Two-Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
122
131
.
28.
Aboutalebi
,
M.
,
Moghaddam
,
A. N.
,
Mohammadi
,
N.
, and
Shafii
,
M.
,
2013
, “
Experimental Investigation on Performance of a Rotating Closed Loop Pulsating Heat Pipe
,”
Int. Commun. Heat Mass Transfer
,
45
, pp.
137
145
.
29.
Denkena
,
B.
,
Bergmann
,
B.
,
Kono
,
K.
,
Ishiguro
,
R.
, and
Klemme
,
H.
,
2021
, “
Characterization of Heat Conductivity of Eccentrically Rotating Heat Pipes Used for Cooling of Motor Spindles
,”
Science Journal, 2nd International Conference on Thermal Issues in Machine Tools
,
Prague, Czech Republic
,
April, pp. 4698–4705
.
30.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed., John Wiley & Sons Inc., Jefferson City, MO.
31.
Kline
,
S.
, and
McClintock
,
F.
,
1963
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
32.
Moffat
,
R.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.