Abstract

In this paper, the integrated performance of a modular biomass boiler with an existing industrial Rankine steam heat and power cycle and a supplementary supercritical-carbon dioxide (sCO2) Brayton cycle is analyzed. The aim is to leverage the high efficiency supplementary sCO2 cycle to increase net generation and energy efficiency from the existing biomass boiler. Two sCO2 heater configurations situated within the flue gas flow path are investigated, namely a single convective-dominant heater, and a dual heater configuration with a radiative and a convective heater. A quasi-steady-state 1D model was developed to simulate the integrated cycle, including detailed component characteristics for the Rankine and Brayton cycles. The model solves the mass, energy, momentum, and species balance equations. The system is analyzed for three cases: (i) the existing Rankine cycle without the sCO2 integration, (ii) with the single convective-dominant sCO2 heater configuration, and (iii) the dual sCO2 heater configuration. The results show the required rate of overfiring for the sCO2 configurations, with a 15.3% increase in fuel flowrate resulting in an additional 21.2% in net power output. The model quantifies the impact of the sCO2 heaters, with reduced heat uptakes for downstream boiler heat exchangers. Furnace water wall heat uptake increased due to overfiring, offsetting the reduced heat uptakes at downstream evaporative heat exchangers. The dual configuration has more impact on Rankine cycle operation due to the radiative sCO2 heater placement in front of the second superheater, absorbing some of the direct radiation from the furnace.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
World Bioenergy Association
,
2020
, “Global Bioenergy Statistics 2020,” https://worldbioenergy.org/uploads/201210WBAGBS2020.pdf
2.
IEA
,
2021
, “
Net Zero by 2050—A Roadmap for the Global Energy Sector
,” https://www.iea.org/reports/net-zero-by-2050
3.
Gustavsson
,
L.
,
Börjesson
,
P.
,
Johansson
,
B.
, and
Svenningsson
,
P.
,
1995
, “
Reducing CO2 Emissions by Substituting Biomass for Fossil Fuels
,”
Energy
,
20
(
11
), pp.
1097
1113
.
4.
Brun
,
K.
,
Friedman
,
P.
, and
Dennis
,
R.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
, 1st ed.,
Woodhead Publishing, Elsevier
,
Duxford, UK
.
5.
Singh
,
O. K.
,
2020
, “
Application of Kalina Cycle for Augmenting Performance of Bagasse-Fired Cogeneration Plant of Sugar Industry
,”
Fuel
,
267
(
1
), pp.
1
13
.
6.
Kong
,
R.
,
Deethayat
,
T.
,
Asanakham
,
A.
, and
Kiatsiriroat
,
T.
,
2022
, “
Performance Analysis of Biomass Boiler-Organic Rankine Cycle With Assisted Cascade Heat Pump for Combined Heat and Power Generation Including Exergy-Costing
,”
Sustain. Energy Technol. Assess.
,
52
(
2
), pp.
1
12
.
7.
Zhang
,
F.
,
Feng
,
Y.
,
He
,
Z.
,
Xu
,
J.
,
Zhang
,
Q.
, and
Xu
,
K.
,
2022
, “
Thermo-economic Optimization of Biomass-Fired Organic Rankine Cycles Combined Heat and Power System Coupled CO2 Capture With a Rated Power of 30xKW
,”
Energy
,
254
(
3
), pp.
1
15
.
8.
Chantasiriwan
,
S.
,
2021
, “
Optimum Installation of Economizer, Air Heater, and Flue Gas Dryer in Biomass Boiler
,”
Comput. Chem. Eng.
,
150
(
1
), pp.
1
10
.
9.
Laubscher
,
R.
, and
De Villiers
,
E.
,
2021
, “
Integrated Mathematical Modelling of a 105 t/h Biomass Fired Industrial Watertube Boiler System With Varying Fuel Moisture Content
,”
Energy
,
228
(
1
), pp.
1
19
.
10.
Linares
,
J. I.
,
Cantizano
,
A.
,
Moratilla
,
B. Y.
,
Martín-Palacios
,
V.
, and
Batet
,
L.
,
2016
, “
Supercritical CO2 Brayton Power Cycles for DEMO (Demonstration Power Plant) Fusion Reactor Based on Dual Coolant Lithium Lead Blanket
,”
Energy
,
98
(
1
), pp.
271
283
.
11.
Bauer
,
M. L.
,
Vijaykumar
,
R.
,
Lausten
,
M.
, and
Stekli
,
J.
,
2016
, “
Pathways to Cost Competitive Concentrated Solar Power Incorporating Supercritical Carbon Dioxide Power Cycles
,”
The 5th International Symposium - Supercritical
CO2 Power Cycles,
San Antonio, TX
,
Mar. 28–31
, pp.
1
22
.
12.
Wright
,
S. A.
,
Davidson
,
C. S.
, and
Scammell
,
W. O.
,
2016
, “
Thermo-Economic Analysis of Four sCO2 Waste Heat Recovery Power Systems
,”
5th International sCO2 Power Cycles Symposium
,
San Antonio, TX
,
Mar. 29–31
.
13.
Sarkar
,
J.
, and
Bhattacharyya
,
S.
,
2009
, “
Optimization of Recompression S-CO2 Power Cycle With Reheating
,”
Energy Convers. Manage.
,
50
(
8
), pp.
1939
1945
.
14.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
95
(
1
), pp.
152
183
.
15.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
16.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Thesis, Massachusetts Institute of Technology, Cambridge, MA.
17.
Moroz
,
L.
,
Burlaka
,
M.
,
Rudenko
,
O.
, and
Joly
,
C.
,
2015
, “
Evaluation of Gas Turbine Exhaust Heat Recovery Utilizing Composite Supercritical CO2 Cycle
,”
International Gas Turbine Congress
,
Tokyo, Japan
,
Nov. 15–20
, p.
7
.
18.
Ji-chao
,
Y.
, and
Sobhani
,
B.
,
2021
, “
Integration of Biomass Gasification With a Supercritical CO2 and Kalina Cycles in a Combined Heating and Power System: A Thermodynamic and Exergoeconomic Analysis
,”
Energy
,
222
(
1
), pp.
1
16
.
19.
Balafkandeh
,
S.
,
Zare
,
V.
, and
Gholamian
,
E.
,
2019
, “
Multi-objective Optimization of a Tri-generation System Based on Biomass Gasification/Digestion Combined With S-CO2 Cycle and Absorption Chiller
,”
Energy Convers. Manage.
,
200
(
1
), pp.
1
13
.
20.
Manente
,
G.
, and
Lazzaretto
,
A.
,
2014
, “
Innovative Biomass to Power Conversion Systems Based on Cascaded Supercritical CO2 Brayton Cycles
,”
Biomass Bioenergy
,
69
(
1
), pp.
155
168
.
21.
Mutlu
,
B.
,
Baker
,
D.
, and
Kazanç
,
F.
,
2021
, “
Development and Analysis of the Novel Hybridization of a Single-Flash Geothermal Power Plant With Biomass Driven SCO2-Steam Rankine Combined Cycle
,”
Entropy
,
23
(
6
), p.
766
.
22.
Zignani
,
T.
,
Binotti
,
M.
,
Astolfi
,
M.
, and
Alfani
,
D.
,
2020
, “Feasibility Study on the Application of Supercritical Carbon Dioxide Cycles to Biomass-Fired Power Plants,” MSc. dissertation, Politecnico di Milano, Milan.
23.
Stultz
,
S. C.
, and
Kitto
,
J. B.
,
2005
,
Steam: Its Generation and Use
, 41st ed.,
Babcock & Wilcox
,
Charlotte, NC
.
24.
Rousseau
,
P.
,
Laubscher
,
R.
, and
Rawlins
,
B. T.
,
2023
, “
Heat Transfer Analysis Using Thermofluid Network Models for Industrial Biomass and Utility Scale Coal-Fired Boilers
,”
Energies
,
16
(
4
), p.
1741
.
25.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
26.
Blokh
,
A. G.
,
n.d.
, “
Heat Transfer in Steam Boiler Furnaces
,” https://www.osti.gov/biblio/5288259.
27.
Zhang
,
Y.
,
Li
,
Q.
, and
Zhou
,
H.
,
2016
,
Theory and Calculation of Heat Transfer in Furnaces. Theory and Calculation of Heat Transfer in Furnaces
,
Elsevier
,
New York
.
28.
Brummel
,
H.-G.
,
2010
, “K4 Thermal Radiation of Gas–Solids–Dispersions,”
VDI Heat Atlas
, 2nd ed.,
Springer
,
Dusseldorf, Germany
, pp.
989
1000
.
29.
Lin
,
Z.
,
1991
, “Thermohydraulic Design of Fossil-Fuel-Fired Boiler Components,”
Boilers, Evaporators, and Condensers
, 1st ed.,
S.
Kakac
, ed.,
John Wiley & Sons
,
Nashville, TN
, pp.
363
469
.
30.
Gnielinski
,
V.
,
2016
, “G7 Heat Transfer in cross-flow around single rows of tubes and through tube banks,”
VDI Heat Atlas
, 2nd ed.,
P.
Stephan
,
S.
Kabelac
, et al
, eds.,
Springer-Verlag
,
Dusseldorf, Germany
, pp.
756
760
.
31.
Cengel
,
Y. A.
,
1997
,
Heat Transfer: A Practical Approach
,
McGraw-Hill
,
New York, NY
.
32.
Cavalcanti
,
E. J. C.
,
Carvalho
,
M.
, and
da Silva
,
D. R. S.
,
2020
, “
Energy, Exergy and Exergoenvironmental Analyses of a Sugarcane Bagasse Power Cogeneration System
,”
Energy Convers. Manage.
,
222
(
1
), pp.
1
10
.
33.
Deshmukh
,
R.
,
Jacobson
,
A.
,
Chamberlin
,
C.
, and
Kammen
,
D.
,
2013
, “
Thermal Gasification or Direct Combustion? Comparison of Advanced Cogeneration Systems in the Sugarcane Industry
,”
Biomass Bioenergy
,
55
(
1
), pp.
163
174
.
34.
Servert
,
J.
,
San Miguel
,
G.
, and
López
,
D.
,
2011
, “
Hybrid Solar—Biomass Plants for Power Generation; Technical and Economic Assessment
,”
Global Nest J.
,
13
(
3
), pp.
266
276
.
You do not currently have access to this content.