Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In heating, ventilation, and air conditioning (HVAC) systems for large office buildings, accurate cooling load prediction facilitates the elaboration of energy-efficient and energy-saving operation strategies for the system. In this paper, a hybrid prediction model based on gray relational analysis-improved black widow optimization algorithm-temporal convolutional neural network (GRA-IBWOA-TCN) is proposed for cold load prediction of large office buildings. First, the factors influencing cold load in large office buildings were analyzed, with GRA used to identify key features and reduce input data dimensionality for the prediction model. Second, three improvement strategies are proposed to enhance optimization performance at different stages of the black widow optimization algorithm, aimed at establishing a prediction model for optimizing TCN hyper-parameters through IBWOA. Finally, the algorithm optimization and prediction model comparison experiments were conducted with the intra-week dataset (T1) and the weekend dataset (T2) of a large office building as the study samples, respectively. The results show that the mean absolute percentage error values of the GRA-IBWOA-TCN model for the prediction results of the T1 and T2 datasets are 0.581% and 0.348%, respectively, which are 81.1% and 88.3% lower compared to the TCN model, and exhibit the highest prediction accuracy in optimizing the results of the TCN model and the prediction models, such as backpropagation, support vector machine, long short-term memory, and convolutional neural network, with multiple algorithms, good stability, and generalization ability. In summary, the hybrid prediction model proposed in this paper can provide effective technical support for the energy-saving management of HVAC systems in large office buildings.

References

1.
Jung
,
W.
, and
Jazizadeh
,
F.
,
2019
, “
Comparative Assessment of HVAC Control Strategies Using Personal Thermal Comfort and Sensitivity Models
,”
Build. Environ.
,
158
, pp.
104
119
.
2.
Center, T. U. B. E. E.
,
2020
, “2020 Annual Development Research Report on Building Energy Efficiency in China.”
3.
Song
,
K.
,
Jang
,
Y.
,
Park
,
M.
,
Lee
,
H.-S.
, and
Ahn
,
J.
,
2020
, “
Energy Efficiency of End-User Groups for Personalized HVAC Control in Multi-zone Buildings
,”
Energy
,
206
, p.
118116
.
4.
Vanam
,
J. P.
,
Manjunadh
,
V.
,
Kumar
,
A. S.
,
Kumar
,
T. M.
, and
Kishorebabu
,
N.
,
2023
, “
Recent Developments in HVAC System Control and Building Demand Management
,”
Materials Today: Proceedings
,
4
(
9
), pp.
10288
10292
.
5.
Fan
,
C.
, and
Ding
,
Y.
,
2019
, “
Cooling Load Prediction and Optimal Operation of HVAC Systems Using a Multiple Nonlinear Regression Model
,”
Energy Build.
,
197
, pp.
7
17
.
6.
Zhao
,
R.
,
Wei
,
D.
,
Ran
,
Y.
,
Zhou
,
G.
,
Jia
,
Y.
,
Zhu
,
S.
, and
He
,
Y.
,
2022
, “
Building Cooling Load Prediction Based on LightGBM
,”
IFAC Workshop on Control for Smart Cities: CSC 2022
,
Sozopol, Bulgaria
,
June 27–30
, pp.
114
119
.
7.
Chung
,
W. J.
, and
Liu
,
C.
,
2022
, “
Analysis of Input Parameters for Deep Learning-Based Load Prediction for Office Buildings in Different Climate Zones Using EXplainable Artificial Intelligence
,”
Energy Build.
,
276
, p.
112521
.
8.
Abasnezhad
,
S.
,
Soltani
,
N.
,
Markarian
,
E.
,
Fakhim
,
H. A.
, and
Khezerloo
,
H.
,
2019
, “
Impact of Building Design Parameters Precision on Heating and Cooling Load Calculations
,”
Environ. Prog. Sustainable Energy
,
38
(
2
), pp.
741
749
.
9.
Harb
,
H.
,
Boyanov
,
N.
,
Hernandez
,
L.
,
Streblow
,
R.
, and
Müller
,
D.
,
2016
, “
Development and Validation of Grey-Box Models for Forecasting the Thermal Response of Occupied Buildings
,”
Energy Build.
,
117
, pp.
199
207
.
10.
Feng
,
Z.
,
Zhang
,
M.
,
Wei
,
N.
,
Zhao
,
J.
,
Zhang
,
T.
, and
He
,
X.
,
2022
, “
An Office Building Energy Consumption Forecasting Model With Dynamically Combined Residual Error Correction Based on the Optimal Model
,”
Energy Rep.
,
8
, pp.
12442
12455
.
11.
Liu
,
X.
,
Yu
,
J.
,
Zhao
,
A.
,
Jing
,
W.
, and
Mi
,
L.
,
2023
, “
A Hybrid WOA-SVM Based on CI for Improving the Accuracy of Shopping Mall Air Conditioning System Energy Consumption Prediction
,”
Energy Build.
,
294
, p.
113186
.
12.
Tan
,
X.
,
Zhu
,
Z.
,
Sun
,
G.
, and
Wu
,
L.
,
2022
, “
Room Thermal Load Prediction Based on Analytic Hierarchy Process and Back-Propagation Neural Networks
,”
Build. Simul.
,
15
, pp.
1989
2002
.
13.
Li
,
N.
,
2023
, “
Comparison of the Characteristics of the Control Strategies Based on Artificial Neural Network and Genetic Algorithm for Air Conditioning Systems
,”
J. Build. Eng.
,
66
, p.
105830
.
14.
Metsä-Eerola
,
I.
,
Pulkkinen
,
J.
,
Niemitalo
,
O.
, and
Koskela
,
O.
,
2022
, “
On Hourly Forecasting Heating Energy Consumption of HVAC With Recurrent Neural Networks
,”
Energies
,
15
(
14
), p.
5084
.
15.
Aurangzeb
,
K.
,
Alhussein
,
M.
,
Javaid
,
K.
, and
Haider
,
S. I.
,
2021
, “
A Pyramid-CNN Based Deep Learning Model for Power Load Forecasting of Similar-Profile Energy Customers Based on Clustering
,”
IEEE Access
,
9
, pp.
14992
15003
.
16.
Sun
,
H.
,
wang
,
Y.
,
Niu
,
L.
,
Zhou
,
F.
, and
Li
,
H.
,
2021
, “
A Novel Fuzzy Rough Set Based Long Short-Term Memory Integration Model for Energy Consumption Prediction of Public Buildings
,”
J. Intell. Fuzzy Syst.
,
40
(
3
), pp.
5715
5729
.
17.
Sun
,
H.
,
Niu
,
Y.
,
Li
,
C.
,
Zhou
,
C.
,
Zhai
,
W.
,
Chen
,
Z.
,
Wu
,
H.
, and
Niu
,
L.
,
2022
, “
Energy Consumption Optimization of Building Air Conditioning System Via Combining the Parallel Temporal Convolutional Neural Network and Adaptive Opposition-Learning Chimp Algorithm
,”
Energy
,
259
, p.
125029
.
18.
Koprinska
,
I.
,
Wu
,
D.
, and
Wang
,
Z.
,
2018
, “
Convolutional Neural Networks for Energy Time Series Forecasting
,”
2018 International Joint Conference on Neural Networks: IJCNN 2018
,
Rio de Janeiro, Brazil
,
July 8–13
, pp.
1
8
.
19.
Voß
,
M.
,
Bender-Saebelkampf
,
C.
, and
Albayrak
,
S.
,
2018
, “
Residential Short-Term Load Forecasting Using Convolutional Neural Networks
,”
2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids: SmartGridComm 2018
,
Aalborg, Denmark
,
Oct. 29–31
, pp.
1
6
.
20.
Zhao
,
A.
,
Mi
,
L.
,
Xue
,
X.
,
Xi
,
J.
, and
Jiao
,
Y.
,
2022
, “
Heating Load Prediction of Residential District Using Hybrid Model Based on CNN
,”
Energy Build.
,
266
, p.
112122
.
21.
Orabi
,
A. H.
,
Orabi
,
M. H.
, and
Inkepen
,
D.
,
2018
, “
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
,”
International Workshop on Semantic Evaluation
,
New Orleans, LA
,
June 5–6
.
22.
Hadjout
,
D.
,
Torres
,
J. F.
,
Troncoso
,
A.
,
Sebaa
,
A.
, and
Martinez- Alvarez
,
F.
,
2022
, “
Electricity Consumption Forecasting Based on Ensemble Deep Learning With Application to the Algerian Market
,”
Energy
,
243
, p.
123060
.
23.
Tang
,
X.
,
Chen
,
H.
,
Xiang
,
W.
,
Yang
,
J.
, and
Zou
,
M.
,
2022
, “
Short-Term Load Forecasting Using Channel and Temporal Attention Based Temporal Convolutional Network
,”
Electr. Power Syst. Res.
,
205
, p.
107761
.
24.
Wang
,
H.
,
Jin
,
T.
,
Wang
,
H.
, and
Su
,
D.
,
2022
, “
Application of IEHO–BP Neural Network in Forecasting Building Cooling and Heating Load
,”
Energy Rep.
,
8
, pp.
455
465
.
25.
Dong
,
F.
,
Yu
,
J.
,
Quan
,
W.
,
Xiang
,
Y.
,
Li
,
X.
, and
Sun
,
F.
,
2022
, “
Short-Term Building Cooling Load Prediction Model Based on DwdAdam-ILSTM Algorithm: A Case Study of a Commercial Building
,”
Energy Build.
,
272
, p.
112337
.
26.
Liu
,
Z.
,
Yu
,
J.
,
Feng
,
C.
,
Su
,
Y.
,
Dai
,
J.
, and
Chen
,
Y.
,
2023
, “
A Hybrid Forecasting Method for Cooling Load in Large Public Buildings Based on Improved Long Short Term Memory
,”
J. Build. Eng.
,
76
, p.
107238
.
27.
Yu
,
M.
,
Niu
,
D.
,
Zhao
,
J.
,
Li
,
M.
,
Sun
,
L.
, and
Yu
,
X.
,
2023
, “
Building Cooling Load Forecasting of IES Considering Spatiotemporal Coupling Based on Hybrid Deep Learning Model
,”
Appl. Energy
,
349
, p.
121547
.
28.
Zhang
,
X.
,
Sun
,
Y.
,
Gao
,
D.-C.
,
Zou
,
W.
,
Fu
,
J.
, and
Ma
,
X.
,
2022
, “
Similarity-Based Grouping Method for Evaluation and Optimization of Dataset Structure in Machine-Learning Based Short-Term Building Cooling Load Prediction Without Measurable Occupancy Information
,”
Appl. Energy
,
327
, p.
120144
.
29.
Guelpa
,
E.
,
Marincioni
,
L.
,
Capone
,
M.
,
Deputato
,
S.
, and
Verda
,
V.
,
2019
, “
Thermal Load Prediction in District Heating Systems
,”
Energy
,
176
, pp.
693
703
.
30.
Ling
,
J.
,
Dai
,
N.
,
Xing
,
J.
, and
Tong
,
H.
,
2021
, “
An Improved Input Variable Selection Method of the Data-Driven Model for Building Heating Load Prediction
,”
J. Build. Eng.
,
44
, p.
103255
.
31.
Song
,
K.
,
Kwon
,
N.
,
Anderson
,
K.
,
Park
,
M.
,
Lee
,
H.-S.
, and
Lee
,
S.
,
2017
, “
Predicting Hourly Energy Consumption in Buildings Using Occupancy-Related Characteristics of End-User Groups
,”
Energy Build.
,
156
, pp.
121
133
.
32.
Zhao
,
A.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Yang
,
H.
, and
Zhang
,
Y.
,
2022
, “
Prediction of Functional Zones Cooling Load for Shopping Mall Using Dual Attention Based LSTM: A Case Study
,”
Int. J. Refrig.
,
144
, pp.
211
221
.
33.
Godinho
,
X.
,
Bernardo
,
H.
,
de Sousa
,
J. C.
, and
Oliveira
,
F. T.
,
2021
, “
A Data-Driven Approach to Forecasting Heating and Cooling Energy Demand in an Office Building as an Alternative to Multi-Zone Dynamic Simulation
,”
Appl. Sci.
,
11
(
4
), pp.
1356
.
34.
Hayyolalam
,
V.
, and
Pourhaji Kazem
,
A. A.
,
2020
, “
Black Widow Optimization Algorithm: A Novel Meta-Heuristic Approach for Solving Engineering Optimization Problems
,”
Eng. Appl. Artif. Intell.
,
87
, p.
103249
.
35.
Liu
,
Jingsen
,
Zhao
,
Fangyuan
,
Li
,
Yu
, and
Zhou
,
H.
,
2023
, “
A New Global Sine Cosine Algorithm for Solving Economic Emission Dispatch Problem
,”
Inf. Sci.
,
648
(
2023
), p.
119569
.
36.
Xu
,
D.
, and
Yin
,
J.
,
2023
, “
An Improved Black Widow Optimization Algorithm for Engineering Constrained Optimization Problems
,”
IEEE Access
,
11
, pp.
32476
32495
.
37.
Lee
,
C.-Y.
, and
Zhuo
,
G.-L.
,
2021
, “
A Hybrid Whale Optimization Algorithm for Global Optimization
,”
Mathematics
,
9
(
13
), pp.
1477
.
38.
Houssein
,
E. H.
,
Helmy
,
B. E.-D.
,
Elngar
,
A. A.
,
Abdelminaam
,
D. S.
, and
Shaban
,
H.
,
2021
, “
An Improved Tunicate Swarm Algorithm for Global Optimization and Image Segmentation
,”
IEEE Access
,
9
, pp.
56066
56092
.
You do not currently have access to this content.