Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

With the development of electronic information technology, the integration and power of electronic equipment continue to increase. As an efficient heat transfer element, vapor chambers are widely used in the field of heat dissipation of electronic devices. However, greater challenges have been posed in terms of higher heat dissipation capacity, larger size, and lighter weight. Therefore, a large-scale aluminum vapor chamber with a size of 340 mm × 295 mm × 7.5 mm is designed for the heat dissipation of multi-point array heat sources. Multiple parallel porous ribs are sintered to form capillary wicking channels and vapor diffusion paths, which efficiently transfer the heat from the middle of the vapor chamber to the cold plate on the two sides. The transient working characteristics and heat dissipation performance under different working conditions are experimentally investigated. The results show that there is obvious temperature instability, which can be suppressed by the tilt of the vapor chamber and the increase of the heating power. Under the tilt condition, the temperature rises in the vertical direction due to the influence of gravity, while the inclination angle has basically no effect. The vapor chamber can work stably at the total heating power of 2100 W with the smallest thermal resistance 0.03 °C/W. The single-point heat flux can reach 7.3 W/cm2 for the 128 heat sources. Compared to a traditional vapor chamber, the proposed aluminum vapor chamber provides a thermal management solution for large-size electronic devices with multiple heat sources.

References

1.
Wong
,
S. C.
,
Liou
,
J. H.
, and
Chang
,
C. W.
,
2010
, “
Evaporation Resistance Measurement With Visualization for Sintered Copper Powder Evaporator in Operating Flat-Plate Heat Pipes
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3792
3798
.
2.
Li
,
Y.
,
Li
,
Z. X.
,
Zhou
,
W. J.
,
Zeng
,
Z. X.
,
Yan
,
Y. Y.
, and
Li
,
B.
,
2016
, “
Experimental Investigation of Vapor Chambers With Different Wick Structures at Various Parameters
,”
Exp. Therm. Fluid Sci.
,
77
, pp.
132
143
.
3.
Zhou
,
W.
,
Li
,
Y.
,
Chen
,
Z.
,
Deng
,
L.
, and
Gan
,
Y.
,
2019
, “
Effect of the Passage Area Ratio of Liquid to Vapor on an Ultra-Thin Flattened Heat Pipe
,”
Appl. Therm. Eng.
,
162
, p.
114215
.
4.
Huang
,
G.
,
Liu
,
W.
,
Luo
,
Y.
,
Li
,
Y.
, and
Chen
,
H.
,
2019
, “
Fabrication and Thermal Performance of Mesh-Type Ultra-Thin Vapor Chambers
,”
Appl. Therm. Eng.
,
162
, p.
114263
.
5.
Liu
,
W. Y.
,
Peng
,
Y.
,
Luo
,
T.
,
Luo
,
Y. Q.
, and
Huang
,
K. D.
,
2016
, “
The Performance of the Vapor Chamber Based on the Plant Leaf
,”
Int. J. Heat Mass Transfer
,
98
, pp.
746
757
.
6.
Zeng
,
J.
,
Lin
,
L.
,
Tang
,
Y.
,
Sun
,
Y. L.
, and
Yuan
,
W.
,
2017
, “
Fabrication and Capillary Characterization of Micro-Grooved Wicks With Reentrant Cavity Array
,”
Int. J. Heat Mass Transfer
,
104
, pp.
918
929
.
7.
Kousalya
,
A. S.
,
Weibel
,
J. A.
,
Garimella
,
S. V.
, and
Fisher
,
T. S.
,
2013
, “
Metal Functionalization of Carbon Nanotubes for Enhanced Sintered Powder Wicks
,”
Int. J. Heat Mass Transfer
,
59
(
1
), pp.
372
383
.
8.
Deng
,
D. X.
,
Tang
,
Y.
,
Huang
,
G. H.
,
Lu
,
L. S.
, and
Yuan
,
D.
,
2013
, “
Characterization of Capillary Performance of Composite Wicks for Two-Phase Heat Transfer Devices
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
283
293
.
9.
Xu
,
S. S.
,
Lewis
,
R. J.
,
Liew
,
L. A.
,
Lee
,
Y. C.
, and
Yang
,
R. G.
,
2016
, “
Development of Ultra-Thin Thermal Ground Planes by Using Stainless-Steel Mesh as Wicking Structure
,”
J. Microelectromech. Syst.
,
25
(
5
), pp.
842
844
.
10.
Chen
,
Y. T.
,
Kang
,
W. S.
,
Hung
,
Y. H.
,
Huang
,
C. H.
, and
Chien
,
K. C.
,
2013
, “
Feasibility Study of an Aluminum Vapor Chamber With Radial Grooved and Sintered Powders Wick Structures
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
864
870
.
11.
Zeng
,
J.
,
Zhang
,
S. W.
,
Chen
,
G.
,
Lin
,
L.
,
Sun
,
Y. L.
,
Chuai
,
L.
, and
Yuan
,
W.
,
2018
, “
Experimental Investigation on Thermal Performance of Aluminum Vapor Chamber Using Micro-Grooved Wick With Reentrant Cavity Array
,”
Appl. Therm. Eng.
,
130
, pp.
185
194
.
12.
Alijani
,
H.
,
Çetin
,
B.
,
Akkuş
,
Y.
, and
Dursunkaya
,
Z.
,
2018
, “
Effect of Design and Operating Parameters on the Thermal Performance of Aluminum Flat Grooved Heat Pipes
,”
Appl. Therm. Eng.
,
132
, pp.
174
187
.
13.
Chen
,
G.
,
Tang
,
Y.
,
Wan
,
Z. P.
,
Zhong
,
G. S.
,
Tang
,
H.
, and
Zeng
,
J.
,
2019
, “
Heat Transfer Characteristic of an Ultra-Thin Flat Plate Heat Pipe With Surface-Functional Wicks for Cooling Electronics
,”
Int. Commun. Heat Mass Transfer
,
100
, pp.
12
19
.
14.
Kim
,
J. S.
,
Shin
,
D. H.
,
You
,
S. M.
, and
Lee
,
J.
,
2021
, “
Thermal Performance of Aluminum Vapor Chamber for EV Battery Thermal Management
,”
Appl. Therm. Eng.
,
185
, p.
116337
.
15.
Wang
,
G.
,
Wang
,
T.
,
Hu
,
T.
,
Yu
,
W.
, and
Yang
,
Y.
,
2022
, “
Visualization Research and Simulation Analysis on Flat Plate Heat Pipe
,”
Heat Mass Transfer
,
58
(
9
), pp.
1649
1665
.
16.
Yuan
,
X.
,
Huang
,
Y.
,
Zheng
,
X.
,
Tang
,
Y.
,
Wu
,
C.
,
Zhang
,
S.
, and
Yan
,
C.
,
2023
, “
Experimental Study of Large-Area Ultra-Thin Vapor Chamber for Microelectronic Heat Dissipation
,”
J. Energy Storage
,
72
, p.
108219
.
17.
Liu
,
B.
,
Li
,
H.
,
Li
,
K.
,
Meng
,
Q.
,
Yang
,
C.
, and
Fu
,
C.
,
2019
, “
Effects of Heat Source Positions on Temperature Uniformity of Large Vapor Chamber Antigravity Flat Plate Heat Pipe
,”
Arab. J. Sci. Eng.
,
44
(
7
), pp.
6571
6579
.
18.
Moon
,
S.-H.
,
Choi
,
K.-S.
,
Lee
,
J.-H.
, and
Kim
,
H.-T.
,
2020
, “
Application of Aluminum Flat Heat Pipe for Dry Cooling Near the Hot Spot of a Radar Array With a Multiscale Structure
,”
Appl. Therm. Eng.
,
169
, p.
114894
.
19.
Feng
,
C.
,
Gibbons
,
M. J.
,
Marengo
,
M.
, and
Chandra
,
S.
,
2020
, “
A Novel Ultra-Large Flat Plate Heat Pipe Manufactured by Thermal Spray
,”
Appl. Therm. Eng.
,
171
, p.
115030
.
20.
Zhan
,
D. D.
,
Qian
,
J. Y.
,
Zhang
,
Y. S.
, and
Huang
,
H. J.
,
2020
, “
Experimental Study on Thermal Performance of Aluminous Vapor Chamber
,”
Proc. Seventh Asia Int. Symp. Mechatron.
,
589
, pp.
266
276
.
21.
Li
,
W.
,
Li
,
L.
,
Cui
,
W.
, and
Guo
,
M.
,
2021
, “
Experimental Investigation on the Thermal Performance of Vapor Chamber in a Compound Liquid Cooling System
,”
Int. J. Heat Mass Transfer
,
170
, p.
121026
.
22.
Li
,
J.
,
Li
,
X.
,
Zhou
,
G.
, and
Liu
,
Y.
,
2021
, “
Development and Evaluation of a Supersized Aluminum Flat Plate Heat Pipe for Natural Cooling of High Power Telecommunication Equipment
,”
Appl. Therm. Eng.
,
184
, p.
116278
.
23.
Xue
,
Q.
,
Xia
,
G.
, and
Zhou
,
W.
,
2024
, “
Experimental Investigation on the Optimization of Different Filling Ratios for Large-Size Flat Plate Heat Pipe Array
,”
Appl. Therm. Eng.
,
236
, p.
121857
.
24.
Sigurdson
,
M.
,
Liu
,
Y. W.
,
Bozorgi
,
P.
,
Bothman
,
D.
,
MacDonald
,
N.
, and
Meinhart
,
C.
,
2013
, “
A Large Scale Titanium Thermal Ground Plane
,”
Int. J. Heat Mass Transfer
,
62
, pp.
178
183
.
25.
Zhong
,
G. S.
,
Tang
,
Y.
,
Ding
,
X. R.
,
Rao
,
L. S.
,
Chen
,
G.
,
Tang
,
K. R.
,
Yuan
,
W.
, and
Li
,
Z. T.
,
2020
, “
Experimental Study of a Large-Area Ultra-Thin Flat Heat Pipe for Solar Collectors Under Different Cooling Conditions
,”
Renew. Energy
,
149
, pp.
1032
1039
.
26.
Tang
,
Y.
,
Lin
,
L.
,
Zhang
,
S. W.
,
Zeng
,
J.
,
Tang
,
K. R.
,
Chen
,
G.
, and
Yuan
,
W.
,
2017
, “
Thermal Management of High-Power LEDs Based on Integrated Heat Sink With Vapor Chamber
,”
Energy Convers. Manage.
,
151
, pp.
1
10
.
27.
Ma
,
J. L.
,
Fu
,
X.
,
Hu
,
R.
, and
Luo
,
X. B.
,
2014
, “
Effect of Inclination Angle on the Performance of a Kind of Vapor Chamber
,”
J. Solid State Light.
,
1
(
1
), pp.
1
9
.
28.
Tsai
,
M.-C.
,
Kang
,
S.-W.
, and
de Paiva
,
K. V.
,
2013
, “
Experimental Studies of Thermal Resistance in a Vapor Chamber Heat Spreader
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
38
44
.
29.
Chen
,
L.
,
Deng
,
D.
,
Huang
,
Q.
,
Xu
,
X.
, and
Xie
,
Y.
,
2020
, “
Development and Thermal Performance of a Vapor Chamber With Multi-artery Reentrant Microchannels for High-Power LED
,”
Appl. Therm. Eng.
,
166
, p.
114686
.
30.
Chang
,
J. Y.
,
Prasher
,
R. S.
,
Prstic
,
S.
,
Cheng
,
P.
, and
Ma
,
H. B.
,
2008
, “
Evaporative Thermal Performance of Vapor Chambers Under Nonuniform Heating Conditions
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
12
), p.
121501
.
31.
Wong
,
S. C.
,
Hsieh
,
K. C.
,
Wu
,
J. D.
, and
Han
,
W. L.
,
2010
, “
A Novel Vapor Chamber and Its Performance
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2377
2384
.
32.
Velardo
,
J.
,
Date
,
A.
,
Singh
,
R.
,
Nihill
,
J.
,
Date
,
A.
, and
Phan
,
T. L.
,
2019
, “
On the Effective Thermal Conductivity of the Vapour Region in Vapour Chamber Heat Spreaders
,”
Int. J. Heat Mass Transfer
,
145
, p.
118797
.
33.
Lu
,
X.
,
Hua
,
T.-C.
, and
Wang
,
Y.
,
2011
, “
Thermal Analysis of High Power LED Package With Heat Pipe Heat Sink
,”
Microelectron. J.
,
42
(
11
), pp.
1257
1262
.
34.
Peng
,
H.
,
Li
,
J.
, and
Ling
,
X.
,
2013
, “
Study on Heat Transfer Performance of an Aluminum Flat Plate Heat Pipe With Fins in Vapor Chamber
,”
Energy Convers. Manage.
,
74
, pp.
44
50
.
35.
Harmand
,
S.
,
Sonan
,
R.
,
Fakès
,
M.
, and
Hassan
,
H.
,
2011
, “
Transient Cooling of Electronic Components by Flat Heat Pipes
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
1877
1885
.
36.
Zhan
,
D.
,
Zhou
,
J.
,
Qian
,
J.
, and
Cao
,
Y.
,
2024
, “
Investigation on Conduction Heat Dissipation for Thermal Management in Distributed Multi-point Electronic Chips
,”
J. Phys.: Conf. Ser.
,
2708
(
1
), p.
012001
.
37.
Narcy
,
M.
,
Lips
,
S.
, and
Sartre
,
V.
,
2018
, “
Experimental Investigation of a Confined Flat Two-Phase Thermosyphon for Electronics Cooling
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
516
529
.
38.
Sparrow
,
E. M.
, and
Carlson
,
C. K.
,
1986
, “
Local and Average Natural Convection Nusselt Numbers for a Uniformly Heated, Shrouded or Unshrouded Horizontal Plate
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
369
380
.
39.
Han
,
X. X.
,
Wang
,
Y. X.
, and
Liang
,
Q. Q.
,
2018
, “
Investigation of the Thermal Performance of a Novel Flat Heat Pipe Sink With Multiple Heat Sources
,”
Int. Commun. Heat Mass Transfer
,
94
, pp.
71
76
.
You do not currently have access to this content.