Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Ventilation with optimal airflow patterns is the most significant aspect in controlling airborne transmission as well as providing an improved indoor thermal environment and air quality in an energy-efficient way. Conducting the air-conditioned computer laboratory in educational institutes during the pandemic is challenging. This article presents a comparative study on various aspects related to indoor environmental quality factors, including thermal comfort indices, vertical air temperature differences, draught rate, air distribution effectiveness, CO2 concentration levels, energy saving, and dispersion of exhaled droplets of aerosols in different sizes (0.5 μm, 6 μm, 20 μm, and 45 μm). The study examines these factors by comparing 12 cases with different air distribution strategies (stratum, underfloor), air change rates (15 ACH and 20 ACH), and return outlet positions (1.3 m, 1.8 m, and 2.3 m). The numerical investigation is carried out in the educational institute computer laboratory model with the dimensions of 10 m (length), 5 m (width), and 3 m (height). The findings indicated that stratum ventilation and underfloor air distribution (UFAD) at a rate of 20 ACH, along with the placement of the return outlet in position 2, would ensure adequate ventilation, acceptable thermal comfort, and optimal energy savings. Compared to the overhead air distribution system, the maximum energy savings were obtained at 10.15% and 10.07% in both stratum and underfloor air distribution systems. Furthermore, the higher air distribution index and ventilation parameter were acquired in the UFAD system at 20 ACH. This study provides a better understanding of air distribution systems and aerosol particle dispersion in the indoor environment of a computer laboratory.

References

1.
World Health Organization
,
2020
, “Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions,” https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions.
2.
Xu
,
J.
,
Liu
,
Z. Q.
, and
Wang
,
Y. L.
,
2020
, “
Influences of Three Types of Air-Conditioning Systems on Human Thermal Comfort
,”
Sci. Technol. Built Environ.
,
26
(
6
), pp.
763
777
.
3.
Chen
,
Q.
, and
Srebric
,
J.
,
2002
, “
A Procedure for Verification, Validation, and Reporting of Indoor Environment CFD Analyses
,”
HVAC&R Res.
,
8
(
2
), pp.
201
216
.
4.
Rahmati
,
B.
,
Heidarian
,
A.
, and
Jadidi
,
A. M.
,
2018
, “
Investigation in Performance of a Hybrid Under-Floor Air Distribution With Improved Desk Displacement Ventilation System in a Small Office
,”
Appl. Therm. Eng.
,
138
(
4
), pp.
861
872
.
5.
Fan
,
Y.
,
Li
,
X.
,
Yan
,
Y.
, and
Tu
,
J.
,
2017
, “
Overall Performance Evaluation of Underfloor Air Distribution System With Different Heights of Return Vents
,”
Energy Build.
,
147
(
14
), pp.
176
187
.
6.
Zheng
,
C.
,
You
,
S.
,
Zhang
,
H.
,
Zheng
,
W.
,
Zheng
,
X.
,
Ye
,
T.
, and
Liu
,
Z.
,
2018
, “
Comparison of Air-Conditioning Systems With Bottom-Supply and Side-Supply Modes in a Typical Office Room
,”
Appl. Energy
,
227
(
C
), pp.
304
311
.
7.
Cheng
,
Y.
,
Yang
,
B.
,
Lin
,
Z.
,
Yang
,
J.
,
Jia
,
J.
, and
Du
,
Z.
,
2018
, “
Cooling Load Calculation Methods in Spaces With Stratified Air: A Brief Review and Numerical Investigation
,”
Energy Build.
,
165
(
8
), pp.
47
55
.
8.
Ho
,
S. H.
,
Rosario
,
L.
, and
Rahman
,
M. M.
,
2011
, “
Comparison of Underfloor and Overhead Air Distribution Systems in an Office Environment
,”
Build. Environ.
,
46
(
7
), pp.
1415
1427
.
9.
Zheng
,
W.
,
Hu
,
J.
,
Wang
,
Z.
,
Li
,
J.
,
Fu
,
Z.
,
Li
,
H.
,
Jurasz
,
J.
,
Chou
,
S. K.
, and
Yan
,
J.
,
2021
, “
COVID-19 Impact on Operation and Energy Consumption of Heating, Ventilation and Air-Conditioning (HVAC) Systems
,”
Adv. Appl. Energy
,
3
(
3
), p.
100040
.
10.
SHASE
,
2020
, Q&A on Ventilation in the Control of SARS-CoV-2 Infection.
11.
ASHRAE
,
2020
, Issues Statements on Relationship Between COVID-19 and HVAC in Buildings.
12.
ISHRAE
,
2020
, “
Startup and Operation of Air Conditioning and Ventilation Systems During Pandemic in Commercial and Industrial Workspaces
”.
13.
Chen
,
C.
,
Zhu
,
J.
,
Qu
,
Z.
,
Lin
,
C. H.
,
Jiang
,
Z.
, and
Chen
,
Q.
,
2014
, “
Systematic Study of Person-to-Person Contaminant Transport in Mechanically Ventilated Spaces (RP-1458)
,”
HVACR Res.
,
20
(
1
), pp.
80
91
.
14.
Yoon Park
,
D.
, and
Chang
,
S.
,
2019
, “
Numerical Investigation of Thermal Comfort and Transport of Expiratory Contaminants in a Ventilated Office With an Air Curtain System
,”
Indoor Built Environ.
,
28
(
3
), pp.
401
421
.
15.
Zhang
,
B.
,
Guo
,
G.
,
Zhu
,
C.
,
Ji
,
Z.
, and
Lin
,
C. H.
,
2020
, “
Transport and Trajectory of Cough-Induced Bimodal Aerosol in an Air-Conditioned Space
,”
Indoor Built Environ.
,
30
(
9
), pp.
1546
1567
.
16.
Ren
,
J.
,
Wang
,
Y.
,
Liu
,
Q.
, and
Liu
,
Y.
,
2020
, “
Numerical Study of Three Ventilation Strategies in a Prefabricated COVID-19 Inpatient Ward
,”
Build. Environ.
,
188
(
2
), p.
107467
.
17.
Cetin
,
Y. E.
,
Avci
,
M.
, and
Aydin
,
O.
,
2020
, “
Influence of Ventilation Strategies on Dispersion and Removal of Fine Particles: An Experimental and Simulation Study
,”
Sci. Technol. Built Environ.
,
26
(
3
), pp.
349
365
.
18.
Gao
,
N.
,
Niu
,
J.
, and
Morawska
,
L.
, “
Distribution of Respiratory Droplets in Enclosed Environments Under Different Air Distribution Methods
,”
Build. Simul.
,
1
(
4
), pp.
326
335
.
19.
Cetin
,
Y. E.
,
Avci
,
M.
, and
Aydin
,
O.
,
2020
, “
Particle Dispersion and Deposition in Displacement Ventilation Systems Combined With Floor Heating
,”
Sci. Technol. Built Environ.
,
26
(
8
), pp.
1019
1036
.
20.
Lu
,
Y.
, and
Lin
,
Z.
,
2021
, “
Coughed Droplet Dispersion Pattern in Hospital Ward Under Stratum Ventilation
,”
Build. Environ.
,
208
(
3
), p.
108602
.
21.
Lu
,
Y.
,
Oladokun
,
M.
, and
Lin
,
Z.
,
2020
, “
Reducing the Exposure Risk in Hospital Wards by Applying Stratum Ventilation System
,”
Build. Environ.
,
183
(
18
), p.
107204
.
22.
Motamedi
,
H.
,
Shirzadi
,
M.
,
Tominaga
,
Y.
, and
Mirzaei
,
P. A.
,
2022
, “
CFD Modeling of Airborne Pathogen Transmission of COVID-19 in Confined Spaces Under Different Ventilation Strategies
,”
Sustain. Cities Soc.
,
76
(
1
), p.
103397
.
23.
Lakshmanan
,
R. K.
, and
Lachireddi
,
G. K. K.
,
2022
, “
A Field Study on Indoor Environmental Quality and Energy Savings of an Office Building Integrated With Underfloor Air Conditioning System in India
,”
Sci. Technol. Built Environ.
,
29
(
2
), pp.
109
130
.
24.
Ramesh Krishnan
,
L.
, and
Gangadhara Kiran Kumar
,
L.
,
2021
, “
Computational Analysis of Indoor Air Distribution Assessment on Under-Floor Air-Conditioning System
,”
Lect. Notes Mech. Eng.
,
4
(
2
), pp.
769
777
.
25.
Kobayashi
,
T.
,
Sugita
,
K.
,
Umemiya
,
N.
,
Kishimoto
,
T.
, and
Sandberg
,
M.
,
2017
, “
Numerical Investigation and Accuracy Verification of Indoor Environment for an Impinging Jet Ventilated Room Using Computational Fluid Dynamics
,”
Build. Environ.
,
115
(
5
), pp.
251
268
.
26.
Cao
,
S.
,
Li
,
F.
, and
Li
,
X.
,
2022
, “
Numerical Study on Settlement Characteristics of Inhalable Particles in Under-Floor Air Distribution System
,”
J. Build. Eng.
,
45
(
1
), pp.
2352
7102
.
27.
Rohdin
,
P.
, and
Moshfegh
,
B.
,
2007
, “
Numerical Predictions of Indoor Climate in Large Industrial Premises. A Comparison Between Different k-ε Models Supported by Field Measurements
,”
Build. Environ.
,
42
(
11
), pp.
3872
3882
.
28.
Kong
,
Q.
, and
Yu
,
B.
,
2008
, “
Numerical Study on Temperature Stratification in a Room With Underfloor Air Distribution System
,”
Energy Build.
,
40
(
4
), pp.
495
502
.
29.
ANSI/ASHRAE Standard 62.1
,
2019
, “
Ventilation for Acceptable Indoor Air Quality
,” ASHRAE, Atlanta, GA.
30.
Taheri
,
M.
,
Zolfaghari
,
S. A.
,
Afzalian
,
M.
, and
Hassanzadeh
,
H.
,
2021
, “
The Influence of Air Inlet Angle in Swirl Diffusers of UFAD System on Distribution and Deposition of Indoor Particles
,”
Build. Environ.
,
191
(
5
), p.
107613
.
31.
Zhang
,
Z.
, and
Chen
,
Q.
,
2006
, “
Experimental Measurements and Numerical Simulations of Particle Transport and Distribution in Ventilated Rooms
,”
Atmos. Environ.
,
40
(
18
), pp.
3396
3408
.
32.
Chao
,
C. Y. H.
,
Wan
,
M. P.
,
Morawska
,
L.
,
Johnson
,
G. R.
,
Ristovski
,
Z. D.
,
Hargreaves
,
M.
,
Mengersen
,
K.
, et al
,
2009
, “
Characterization of Expiration Air Jets and Droplet Size Distributions Immediately at the Mouth Opening
,”
Aerosol Sci.
,
40
(
2
), pp.
122
133
.
33.
Kobayashi
,
N.
, and
Chen
,
Q.
,
2003
, “
Floor-Supply Displacement Ventilation in a Small Office
,”
Indoor Built Env.
,
12
(
4
), pp.
281
291
.
34.
Fathollahzadeh
,
M. H.
,
Heidarinejad
,
G.
, and
Pasdarshahri
,
H.
,
2015
, “
Prediction of Thermal Comfort, IAQ, and Energy Consumption in a Dense Occupancy Environment With the Under Floor Air Distribution System
,”
Build. Environ.
,
90
(
8
), pp.
96
104
.
35.
ANSI/ASHRAE 55
,
2020
, “
Thermal Environmental Conditions for Human Occupancy
,” ASHRAE, Atlanta, GA.
36.
ISO: 7730
,
2005
, “
Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria
,” ISO, Geneva, Switzerland.
37.
ASHRAE UFAD Guide
,
2013
, “
Design, Construction and Operation of Underfloor Air Distribution Systems
,” ASHRAE, Atlanta, GA.
38.
EN 16798
,
2019
, “
Energy Performance of Buildings—Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics
,” CEN-CENELEC Management Centre: Brussels, Belgium.
39.
Awbi
,
H. B.
,
2003
,
Ventilation of Buildings
,
Taylor & Francis
,
London, UK
.
40.
Ashish
R
,
2019
, “
Indoor Environmental Quality Standard- 10001: 2019
,” ISHRAE, India.
41.
Enescu
,
D.
,
2017
, “
A Review of Thermal Comfort Models and Indicators for Indoor Environments
,”
Renewable Sustainable Energy Rev.
,
79
(
11
), pp.
1353
1379
.
42.
Tartarini
,
F.
,
Schiavon
,
S.
,
Cheung
,
T.
, and
Hoyt
,
T.
,
2020
, “
CBE Thermal Comfort Tool: Online Tool for Thermal Comfort Calculations and Visualizations
,”
SoftwareX
,
12
(
2
), p.
100563
.
43.
Cheng
,
Y.
,
Niu
,
J.
, and
Gao
,
N.
,
2012
, “
Stratified Air Distribution Systems in a Large Lecture Theatre: A Numerical Method to Optimize Thermal Comfort and Maximize Energy Saving
,”
Energy Build.
,
55
(
12
), pp.
515
525
.
You do not currently have access to this content.