Abstract

Specific heat is a vital characteristic of nanofluids. The present work is an experimental assessment for the isobaric specific heat measurements for the Al2O3 nanoparticle dispersed in a base fluid of different mixture of ethylene glycol and water at 30, 40, 50, and 60 vol% based. The experiments were conducted over temperature range from 35 to 105 °C with nanoparticle concentrations of 0.5–2.5 vol%. The results indicated that the specific heat of nanofluid decreases as the nanoparticle volume increases and percentage of ethylene glycol in base fluid increases but increases as the temperature increases. This characteristic demonstrates that the use of nanofluids should be at as high temperature as possible to fulfill a good beneficial effect. A new correlation from the measurements with maximum deviation of 2.2% was found to estimate the specific heat for these nanofluids.

References

1.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Hoseini
,
S. M.
, and
Jamnani
,
M. S.
,
2011
, “
Experimental Study of Heat Transfer Enhancement Using Water/Ethylene Glycol Based Nanofluids as a New Coolant for Car Radiators
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1283
1290
.
2.
Yadav
,
J. P.
, and
Singh
,
B. R.
,
2015
, “
Study on Performance Evaluation of Automotive Radiator
,”
SAMRIDDHI A J. Phys. Sci. Eng. Technol.
,
2
(
2
), pp.
47
56
.
3.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
,”
ASME J. Heat Transfer
,
131
(
7
), p.
071601
.
4.
Naphon
,
P.
,
Assadamongkol
,
P.
, and
Borirak
,
T.
,
2008
, “
Experimental Investigation of Titanium Nanofluids on the Heat Pipe Thermal Efficiency
,”
Int. Commun. Heat Mass Transfer
,
35
(
10
), pp.
1316
1319
.
5.
Demir
,
H.
,
Dalkilic
,
A. S.
,
Kürekci
,
N. A.
,
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2011
, “
Numerical Investigation on the Single Phase Forced Convection Heat Transfer Characteristics of TiO2 Nanofluids in a Double-Tube Counter Flow Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
38
(
2
), pp.
218
228
.
6.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2009
, “
Heat Transfer Enhancement and Pressure Drop Characteristics of TiO2-Water Nanofluid in a Double-Tube Counter Flow Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2059
2067
.
7.
Meibodi
,
M. E.
,
VafaieSefti
,
M.
,
Rashidi
,
A. M.
,
Amrollahi
,
A.
,
Tabasi
,
M.
, and
Kalal
,
H. S.
,
2010
, “
The Role of Different Parameters on the Stability and Thermal Conductivity of Carbon Nanotube/Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
319
323
.
8.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2010
, “
An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluids Flowing Under a Turbulent Flow Regime
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
334
344
.
9.
Farajollahi
,
B.
,
Etemad
,
S. G.
, and
Hojjat
,
M.
,
2009
, “
Heat Transfer of Nanofluids in a Shell and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
12
17
.
10.
Raj
,
B.
,
Angayarkanni
,
S. A.
, and
Philip
,
J.
,
2017
, “Nano Fluids for Efficient Heat Transfer Applications,”
Nanotechnology for Energy Sustainability
,
Wiley‐VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
, pp.
997
1027
.
11.
Koca
,
H. D.
,
Doganay
,
S.
,
Turgut
,
A.
,
Tavman
,
I. H.
,
Saidur
,
R.
, and
Mahbubul
,
I. M.
,
2018
, “
Effect of Particle Size on the Viscosity of Nanofluids: A Review
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
1664
1674
.
12.
AbuNada
,
E.
,
2017
, “
Simulation of Heat Transfer Enhancement in Nanofluids Using Dissipative Particle Dynamics
,”
Int. Commun. Heat Mass Transfer
,
85
, pp.
1
11
.
13.
Sheikholeslami
,
M.
, and
Bhatti
,
M. M.
,
2017
, “
Active Method for Nanofluid Heat Transfer Enhancement by Means of EHD
,”
Int. J. Heat Mass Transfer
,
109
, pp.
115
122
.
14.
Elsebay
,
M.
,
Elbadawy
,
I.
,
Shedid
,
M. H.
, and
Fatouh
,
M.
,
2016
, “
Numerical Resizing Study of Al2O3 and CuO Nanofluids in the Flat Tubes of a Radiator
,”
Appl. Math. Model.
,
40
(
13–14
), pp.
6437
6450
.
15.
Manetti
,
L. L.
,
Stephen
,
M. T.
,
Beck
,
P. A.
, and
Cardoso
,
E. M.
,
2017
, “
Evaluation of the Heat Transfer Enhancement During Pool Boiling Using Low Concentrations of Al2O3-Water Based Nanofluid
,”
Exp. Therm. Fluid Sci.
,
87
, pp.
191
200
.
16.
Afrand
,
M.
,
Toghraie
,
D.
, and
Sina
,
N.
,
2016
, “
Experimental Study on Thermal Conductivity of Water-Based Fe3O4 Nanofluid: Development of a New Correlation and Modeled by Artificial Neural Network
,”
Int. Commun. Heat Mass Transfer.
,
75
, pp.
262
269
.
17.
Sundar
,
L. S.
,
Singh
,
M. K.
,
Ferro
,
M. C.
, and
Sousa
,
A. C. M.
,
2017
, “
Experimental Investigation of the Thermal Transport Properties of Graphene Oxide/Co3O4 Hybrid Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
84
, pp.
1
10
.
18.
Bejan
,
A.
, and
Kraus
,
A. D.
,
2003
,
Heat Transfer Handbook
.
19.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transf.
,
11
(
2
), pp.
151
170
.
20.
Babu
,
M. J.
,
Sandeep
,
N.
, and
Saleem
,
S.
,
2017
, “
Free Convective MHD Cattaneo-Christov Flow Over Three Different Geometries With Thermophoresis and Brownian Motion
,”
Alexandria Eng. J.
,
56
(
4
), pp.
659
669
.
21.
Namburu
,
P. K.
,
Kulkarni
,
D. P.
,
Dandekar
,
A.
, and
Das
,
D. K.
,
2007
, “
Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids
,”
Micro Nano Lett.
,
2
(
3
), pp.
67
71
.
22.
Zhou
,
S. Q.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), pp.
1
4
.
23.
Robertis
,
E. D.
,
2012
, “
Application of the Modulated Temperature Differential Scanning Calorimetry Technique for the Determination of the Specific Heat of Copper Nanofluids
,”
Appl. Therm. Eng.
,
41
, pp.
10
17
.
24.
Popa
,
C. V.
,
Nguyen
,
C. T.
, and
Gherasim
,
I.
,
2017
, “
New Specific Heat Data for Al2O3 and CuO Nanoparticles in Suspension in Water and Ethylene Glycol
,”
Int. J. Therm. Sci.
,
111
, pp.
108
115
.
25.
Satti
,
J. R.
,
Das
,
D. K.
, and
Ray
,
D.
,
2016
, “
Specific Heat Measurements of Five Different Propylene Glycol Based Nanofluids and Development of a New Correlation
,”
Int. J. Heat Mass Transf.
,
94
, pp.
343
353
.
26.
Alade
,
I. O.
,
Rahman
,
M. A. A.
, and
Saleh
,
T. A.
,
2020
, “
An Approach to Predict the Isobaric Specific Heat Capacity of Nitrides/Ethylene Glycol-Based Nanofluids Using Support Vector Regression
,”
J. Energy Storage
,
29
, p.
101313
.
27.
Salem
,
M. R.
,
Ali
,
R. K.
,
Sakr
,
R. Y.
, and
Elshazly
,
K. M.
,
2015
, “
Effect of γ-Al2O3/Water Nanofluid on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger With Different Coil Curvatures
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
, pp.
4
.
28.
Moghaieb
,
H. S.
,
AbdelHamid
,
H. M.
,
Shedid
,
M. H.
, and
Helali
,
A. B.
,
2017
, “
Engine Cooling Using Al2O3/Water Nanofluids
,”
Appl. Therm. Eng.
,
115
, pp.
152
159
.
29.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transf.
,
54
(
19–20
), pp.
4410
4428
.
30.
Moffat
,
R. J.
,
1998
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
31.
McClintock
,
F.
, and
Kline
,
S. J.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
32.
ASHRAE Handbook: Fundamentals, American Society of Heating
,
Refrigerating and Air-Conditioning Engineers Inc.
,
Atlanta, GA
,
2013
.
You do not currently have access to this content.