Abstract

Preliminary heat exchanger design relies heavily on correlations for overall heat transfer and pressure drop performance, particularly for heat transfer augmentation features such as fins. Extensive work has been performed by the research community to develop these correlations for the numerous designs. However, with the new technology of metal additive manufacturing and the resultant surface roughness, the traditional correlations and design considerations related to performance need to be adjusted. As a result, two metal additively manufactured offset strip fin heat exchanger geometries with different fin spacing are studied for heat transfer and pressure drop performance and compared with traditional correlations. Deviations between the additively manufactured geometries and previous correlations for smooth fins are found and are further amplified as the surface roughness-to-hydraulic diameter ratio is increased. Furthermore, the surface roughness from the additive process results in a constant friction factor behavior at high Reynolds numbers, which is unlike behavior observed for conventionally manufactured fins. Considerations for both the laminar and turbulent flow regimes are needed for correct performance prediction. A final offset strip fin geometry with a change in the fin spacing every third of the way through the flow path is tested. This study found that the orientation of fin spacing, wider spaced to tightly spaced or tightly spaced to wider spaced, did not have a significant effect on pressure drop or heat transfer. However, the study found a method for predicting the performance which will become important as additive manufacturing increases the complexity of heat exchanger designs.

References

1.
Bloschock
,
K. P.
, and
Bar-Cohen
,
A.
,
2012
, “
Advanced Thermal Management Technologies for Defense Electronics
,”
Defense Transformation and Net-Centric Systems 2012
,
Baltimore, MD
,
May 3
.
2.
Patankar
,
S. V.
, and
Prakash
,
C.
,
1981
, “
An Analysis of the Effect of Plate Thickness on Laminar Flow and Heat Transfer in Interrupted-Plate Passages
,”
Int. J. Heat Mass Transfer
,
24
(
11
), pp.
1801
1810
.
3.
Guo
,
L.
,
Qin
,
F.
,
Chen
,
J.
,
Chen
,
Z.
, and
Zhou
,
Y.
,
2007
, “
Influence of Geometrical Factors and Pressing Mould Wear on Thermal-Hydraulic Characteristics for Steel Offset Strip Fins at Low Reynolds Number
,”
Int. J. Therm. Sci.
,
46
(
12
), pp.
1285
1296
.
4.
Saltzman
,
D.
,
Bichnevicius
,
M.
,
Lynch
,
S.
,
Simpson
,
T. W.
,
Reutzel
,
E. W.
,
Dickman
,
C.
, and
Martukanitz
,
R.
,
2018
, “
Design and Evaluation of an Additively Manufactured Aircraft Heat Exchanger
,”
Appl. Therm. Eng.
,
138
, pp.
254
263
.
5.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
6.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.
7.
Arie
,
M. A.
,
Shooshtari
,
A. H.
, and
Ohadi
,
M. M.
,
2018
, “
Experimental Characterization of an Additively Manufactured Heat Exchanger for Dry Cooling of Power Plants
,”
Appl. Therm. Eng.
,
129
, pp.
187
198
.
8.
Hathaway
,
B. J.
,
Garde
,
K.
,
Mantell
,
S. C.
, and
Davidson
,
J. H.
,
2018
, “
Design and Characterization of an Additive Manufactured Hydraulic Oil Cooler
,”
Int. J. Heat Mass Transfer
,
117
, pp.
188
200
.
9.
EOS GmbH—Electro Optical Systems
,
2009
,
https://fathommfg.com/wp-content/uploads/2020/11/EOS_StainlessSteel-GP1_en.pdf
.
10.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2018
, “
Experimental Investigation of Numerically Optimized Wavy Microchannels Created Through Additive Manufacturing
,”
ASME J. Turbomach.
,
140
(
2
), p.
021002
.
11.
Zarea
,
H.
,
Kashkooli
,
F.
,
Mehryan
,
A.
,
Saffarian
,
M.
, and
Beherghani
,
E.
,
2014
, “
Optimal Design of Plate-Fin Heat Exchangers by a Bees Algorithm
,”
Appl. Therm. Eng.
,
69
(
1–2
), pp.
267
277
.
12.
Hao
,
J. H.
,
Chen
,
Q.
,
Ren
,
J. X.
,
Zhang
,
M. Q.
, and
Ai
,
J.
,
2019
, “
An Experimental Study on the Offset-Strip Fin Geometry Optimization of a Plate-Fin Heat Exchanger Based on the Heat Current Model
,”
Appl. Therm. Eng.
,
154
, pp.
111
119
.
13.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, 3rd ed.,
McGraw-Hill
,
New York
, pp.
199
203
.
14.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
171
180
.
15.
Webb
,
R.
, and
Kim
,
N.-H.
,
2005
,
Principles of Enhanced Heat Transfer
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
16.
Webb
,
R. L.
, and
Joshi
,
H. M.
,
1983
, “
Prediction of the Friction Factor for the Offset Strip-Fin Matrix
,”
ASME-JSME Thermal Engineering Joint Conference
,
Honolulu, HI
,
Mar. 20
, pp.
461
469
.
17.
Manson
,
S. V.
,
1950
, “
Correlations of Heat-Transfer Data and of Friction Data for Interrupted Plane Fins Staggered in Successive Rows
,”
Technical Note 2237, NASA
, p.
1
15
.
18.
Mochizuki
,
S.
, and
Yagi
,
Y.
,
1980
, “
Characteristics of Vortex Shedding in Plate Arrays
,”
Flow Visualization II
,
Bochum, West Germany
,
Sept. 9–12
,
W.
Merzkirch
, ed.,
Hemisphere Publishing
,
London, UK
.
19.
Mochizuki
,
S.
,
Yagi
,
Y.
, and
Yang
,
W. J.
,
1988
, “
Flow Pattern and Turbulence Intensity in Stacks of Interrupted Parallel-Plate Surfaces
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
51
57
.
20.
Dejong
,
N. C.
, and
Jacobi
,
A. M.
,
1997
, “
An Experimental Study of Flow and Heat Transfer in Parallel-Plate Arrays: Local, Row-by-row and Surface Average Behavior
,”
Int. J. Heat Mass Transfer
,
40
(
6
), pp.
1365
1378
.
21.
Toubiana
,
E.
,
Russeil
,
S.
,
Bougeard
,
D.
, and
François
,
N.
,
2015
, “
Large Eddy Simulation and Reynolds-Averaged Navier-Stokes Modeling of Flow in Staggered Plate Arrays: Comparison at Various Flow Regimes
,”
Appl. Therm. Eng.
,
89
, pp.
405
420
.
22.
Lee
,
K. B.
, and
Kwon
,
Y. K.
,
1992
, “
Flow and Thermal Field with Relevance to Heat Transfer Enhancement of Interrupted-Plate Heat Exchangers
,”
Exp. Heat Transfer
,
5
(
2
), pp.
83
100
.
23.
Peng
,
H.
,
Ling
,
X.
, and
Li
,
J.
,
2014
, “
Performance Investigation of an Innovative Offset Strip Fin Arrays in Compact Heat Exchangers
,”
Energy Convers. Manage.
,
80
, pp.
287
297
.
24.
Bala Sundar Rao
,
R.
,
Ranganath
,
G.
, and
Ranganayakulu
,
C.
,
2013
, “
Development of Colburn ‘j’ Factor and Fanning Friction Factor ‘f’ Correlations for Compact Heat Exchanger Plain Fins by Using CFD
,”
Heat Mass Transfer
,
49
(
7
), pp.
991
1000
.
25.
Yang
,
Y.
, and
Li
,
Y.
,
2014
, “
General Prediction of the Thermal Hydraulic Performance for Plate-Fin Heat Exchanger With Offset Strip Fins
,”
Int. J. Heat Mass Transfer
,
78
, pp.
860
870
.
26.
Kim
,
W. N.
,
Kim
,
S. Y.
, and
Kang
,
B. H.
,
2004
, “
CFD Simulation of Thermal Dissipation From Fan-Added Plate Fin and Offset Strip Fin Heat Sinks
,”
Proceedings of the Thermomechanical Phenomena in Electronic Systems – Proceedings of the Intersociety Conference
,
Las Vegas, NV
,
June 1–4
, pp.
213
217
.
27.
Sheik Ismail
,
L.
,
Ranganayakulu
,
C.
, and
Shah
,
R. K.
,
2009
, “
Numerical Study of Flow Patterns of Compact Plate-Fin Heat Exchangers and Generation of Design Data for Offset and Wavy Fins
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
3972
3983
.
28.
Pham
,
M. V.
,
Plourde
,
F.
, and
Doan
,
S. K.
,
2008
, “
Large-Eddy Simulations of Staggered Parallel-Plate Fin Heat Exchangers: Effect of Reynolds Number on Flow Topology
,”
Numer. Heat Transfer, Part A
,
53
(
4
), pp.
354
376
.
29.
Saidi
,
A.
, and
Sundén
,
B.
,
2001
, “
A Numerical Investigation of Heat Transfer Enhancement in Offset Strip Fin Heat Exchangers in Self-sustained Oscillatory Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
,
11
(
7
), pp.
699
716
.
30.
Zhang
,
L. W.
,
Balachandar
,
S.
,
Tafti
,
D. K.
, and
Najjar
,
F. M.
,
1997
, “
Heat Transfer Enhancement Mechanisms in Inline and Staggered Parallel-Plate Fin Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
40
(
10
), pp.
2307
2325
.
31.
Saltzman
,
D.
, and
Lynch
,
S.
,
2021
, “
Flow-Field Measurements in a Metal Additively Manufactured Offset Strip Fin Array Using Laser Doppler Velocimetry
,”
ASME J. Fluids Eng.
,
143
(
4
), p.
041502
.
32.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
.
33.
Lu
,
G.
, and
Zhai
,
X.
,
2019
, “
Analysis on Heat Transfer and Pressure Drop of a Microchannel Heat Sink with Dimples and Vortex Generators
,”
Int. J. Therm. Sci.
,
145
, p.
105986
.
34.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1990
,
Compact Heat Exchangers
, 1st ed.,
Krieger Publishing Company
,
Malabar, FL
, pp.
137
138
.
35.
Mochizuki
,
S.
,
Yagi
,
Y.
, and
Yang
,
W.-J.
,
1987
, “
Transport Phenomena in Stacks of Interrupted Parallel-Plate Surfaces
,”
Exp. Heat Transfer
,
1
(
2
), pp.
127
140
.
36.
Omega
, “
High Temperature and High Thermally Conductive Paste
”, https://assets.omega.com/pdf/consumables/adhesives-and-paste/OT-201.pdf
37.
Photocentric
,
2017
, “
Safety Data Sheet Photocentric 3D resin (Pro Hard)
,” no. 2, https://photocentricgroup.com/wp-content/uploads/2018/07/PHOTOCENTRIC-3D-RESIN-DAYLIGHT-PRO-HARD-MSDS-English.pdf
38.
Shires
,
G. L.
,
1977
,
Two-Phase Flow and Heat Transfer
, pp.
252
253
.
39.
Ma
,
Y.
,
He
,
Z.
,
Peng
,
X.
, and
Xing
,
Z.
, “
Experimental Investigation of the Discharge Valve Dynamics in a Reciprocating Compressor for Trans-critical CO2 Refrigeration Cycle
,”
Appl. Therm. Eng.
,
32
, pp.
13
21
.
40.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
Cambridge, MA
, p.
212
.
41.
Kakac
,
S.
,
Shah
,
R.
, and
Aung
,
W.
,
1987
,
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
,
Hoboken, NJ
, p.
3.52
.
42.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
43.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
44.
Peng
,
H.
, and
Ling
,
X.
,
2008
, “
Numerical Modeling and Experimental Verification of Flow and Heat Transfer Over Serrated Fins at Low Reynolds Number
,”
Exp. Therm. Fluid Sci.
,
32
(
5
), pp.
1039
1048
.
45.
Kandlikar
,
S. G.
,
Schmitt
,
D.
,
Carrano
,
A. L.
, and
Taylor
,
J. B.
,
2005
, “
Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels
,”
Phys. Fluids
,
17
(
10
), p.
100606
.
46.
Huang
,
K.
,
Wan
,
J. W.
,
Chen
,
C. X.
,
Li
,
Y. Q.
,
Mao
,
D. F.
, and
Zhang
,
M. Y.
,
2013
, “
Experimental Investigation on Friction Factor in Pipes With Large Roughness
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
147
153
.
47.
Gloss
,
D.
, and
Herwig
,
H.
,
2010
, “
Wall Roughness Effects in Laminar Flows: An Often Ignored Though Significant Issue
,”
Exp. Fluids
,
49
(
2
), pp.
461
470
.
48.
Michna
,
G. J.
,
Jacobi
,
A. M.
, and
Burton
,
R. L.
,
2007
, “
An Experimental Study of the Friction Factor and Mass Transfer Performance of an Offset-Strip Fin Array at Very High Reynolds Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
9
), pp.
1134
1140
.
49.
DeJong
,
N. C.
,
Zhang
,
L. W.
,
Jacobi
,
A. M.
,
Balachandar
,
S.
, and
Tafti
,
D. K.
,
2008
, “
A Complementary Experimental and Numerical Study of the Flow and Heat Transfer in Offset Strip-Fin Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
3
), pp.
690
698
.
50.
Gillis
,
C. L.
, and
McKee
,
J. W.
,
1941
, “
Wartime Report
,”
Natl. Advis. Comm. Aeronaut.
, pp.
1
19
, https://apps.dtic.mil/sti/citations/ADA801134
51.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
(
6
), pp.
1121
1128
.
52.
London
,
A. L.
,
1990
,
Compact Heat Exchangers
,
CRC Press
,
Boca Raton, FL
, p.
295
.
You do not currently have access to this content.