Abstract

Latent heat thermal energy storage is one of the most relevant methods allowing to provide a solution of the energy supply–demand dilemma. A novel structure of latent heat thermal energy storage (LHTES) unit is designed and manufactured, with multireduced finned U-tubes heat exchangers, while the phase change material is filled in the tube and air flows through the finned surfaces. To increase the stored thermal energy and improve the thermal performance of the latent heat thermal energy storage unit, this experimental study suggests varying the number of reduced heat exchangers used instead increasing the size of a heat exchanger. By using paraffin as phase change material and air as a heat transfer fluid, the thermal charging and discharging characteristics of the storage unit were analyzed. Parameters of thermal performances including temperature distribution of phase change material, heat stored/released, thermal storage efficiency, effectiveness evolution, and total charging/discharging time were analyzed. The experimental results show that using two and three heat exchangers can increase the stored energy by 207% and 298% compared to that using one heat exchanger, respectively. The average effectiveness is increased by 125% and 199%. The designed LHTES unit provides more flexibility and adaptability for real application, and it has a wide application prospect in the fields of air conditioning and solar energy storage.

References

1.
Elarem
,
R.
,
Alqahtani
,
T.
,
Mellouli
,
S.
,
Askri
,
F.
,
Edacherian
,
A.
,
Vineet
,
T.
,
Badruddin
,
I. A.
, and
Abdelmajid
,
J.
,
2020
, “
A Comprehensive Review of Heat Transfer Intensification Methods for Latent Heat Storage Units
,”
Energy Storage
,
3
(
1
), p.
e127
.
2.
Radomska
,
E.
,
Mika
,
L.
,
Sztekler
,
K.
, and
Lis
,
L.
,
2020
, “
The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials
,”
Energies
,
13
(
18
), p.
4840
.
3.
Alhusseny
,
A.
,
Al-Zurfi
,
N.
,
Nasser
,
A.
,
Al-Fatlawi
,
A.
, and
Aljanabi
,
M.
,
2020
, “
Impact of Using a PCM-Metal Foam Composite on Charging/Discharging Process of Bundled-Tube LHTES Units
,”
Int. J. Heat Mass Transfer
,
150
, p.
119320
.
4.
Lei
,
J.
,
Tian
,
Y.
,
Zhou
,
D.
,
Ye
,
W.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2021
, “
Heat Transfer Enhancement in Latent Heat Thermal Energy Storage Using Copper Foams With Varying Porosity
,”
Sol. Energy
,
221
, pp.
75
86
.
5.
Diao
,
Y.
,
Ma
,
C.
,
Chen
,
C.
,
Wang
,
Z.
,
Zhao
,
Y.
, and
Liang
,
L.
,
2021
, “
Experimental Analysis of a Latent Heat Storage Unit With Multichannel Flat Tube and Copper Foam
,”
Appl. Therm. Eng.
,
186
, p.
116503
.
6.
Safari
,
V.
,
Abolghasemi
,
H.
, and
Kamkari
,
B.
,
2021
, “
Experimental and Numerical Investigations of Thermal Performance Enhancement in a Latent Heat Storage Heat Exchanger Using Bifurcated and Straight Fins
,”
Renewable Energy
,
174
, pp.
102
121
.
7.
Kumar
,
A.
, and
Saha
,
S. K.
,
2021
, “
Performance Study of a Novel Funnel Shaped Shell and Tube Latent Heat Thermal Energy Storage System
,”
Renewable Energy
,
165
, pp.
731
747
.
8.
Missoum
,
K.
,
Guellil
,
H.
, and
Korti
,
A. I. N.
,
2020
, “
Improvement of Thermal Conductivity and Energy Stored by Paraffin With Different Metallic Additives
,”
Int. J. Air-Cond. Refrig.
,
28
(
3
), p.
2050028
.
9.
Korti
,
A. I. N.
, and
Guellil
,
H.
,
2020
, “
Experimental Study of the Effect of Inclination Angle on the Paraffin Melting Process in a Square Cavity
,”
J. Energy Storage
,
32
, p.
101726
.
10.
Loem
,
S.
,
Deethayat
,
T.
,
Asanakham
,
A.
, and
Kiatsiriroat
,
T.
,
2019
, “
Thermal Characteristics on Melting/Solidification of Low Temperature PCM Balls Packed Bed With Air Charging/Discharging
,”
Case Stud. Therm. Eng.
,
14
, p.
100
.
11.
Mao
,
Q.
, and
Zhang
,
Y.
,
2020
, “
Thermal Energy Storage Performance of a Three-PCM Cascade Tank in a High-Temperature Packed Bed System
,”
Renewable Energy
,
152
, pp.
110
119
.
12.
Li
,
M.-J.
,
Li
,
M.-J.
,
Tong
,
Z.-X.
, and
Li
,
D.
,
2021
, “
Optimization of the Packed-Bed Thermal Energy Storage With Cascaded PCM Capsules Under the Constraint of Outlet Threshold Temperature
,”
Appl. Therm. Eng.
,
186
, p.
116473
.
13.
Grabo
,
M.
,
Acar
,
E.
, and
Kenig
,
E. Y.
,
2021
, “
Modeling and Improvement of a Packed Bed Latent Heat Storage Filled With Non-Spherical Encapsulated PCM-Elements
,”
Renewable Energy
,
173
, pp.
1087
1097
.
14.
Korti
,
A. I. N.
, and
Tlemsani
,
F. Z.
,
2016
, “
Experimental Investigation of Latent Heat Storage in a Coil in PCM Storage Unit
,”
J. Energy Storage
,
5
, pp.
177
186
.
15.
Guellil
,
H.
,
Korti
,
A. I. N.
, and
Abboudi
,
S.
,
2018
, “
Experimental Study of the Performance of a Novel Latent Heat Charging Unit on Charging and Discharging Processes
,”
Heat Mass Transfer
,
55
(
3
), pp.
855
866
.
16.
Talukdar
,
S.
,
Afroz
,
H. M. M.
,
Hossain
,
M. A.
,
Aziz
,
M. A.
, and
Hossain
,
M. M.
,
2019
, “
Heat Transfer Enhancement of Charging and Discharging of Phase Change Materials and Size Optimization of a Latent Thermal Energy Storage System for Solar Cold Storage Application
,”
J. Energy Storage
,
24
, p.
100797
.
17.
Gao
,
Y.
,
He
,
F.
,
Xu
,
T.
,
Meng
,
X.
,
Zhang
,
M.
,
Yan
,
L.
, and
Gao
,
W.
,
2020
, “
Thermal Performance Analysis of Sensible and Latent Heat Thermal Energy Storage Tanks: A Contrastive Experiment
,”
J. Build. Eng.
,
32
, p.
101713
.
18.
Gürel
,
B.
,
2020
,
“A Numerical Investigation of the Melting Heat Transfer Characteristics of Phase Change Materials in Different Plate Heat Exchanger (Latent Heat Thermal Energy Storage) Systems
,”
Int. J. Heat Mass Transfer
,
148
, p.
119117
.
19.
Amagour
,
M. E. H.
,
Bennajah
,
M.
, and
Rachek
,
A.
,
2021
, “
Numerical Investigation and Experimental Validation of the Thermal Performance Enhancement of a Compact Finned-Tube Heat Exchanger for Efficient Latent Heat Thermal Energy Storage
,”
J. Cleaner Prod.
,
280
, p.
124238
.
20.
Palomba
,
V.
,
Brancato
,
V.
, and
Frazzica
,
A.
,
2019
, “
Thermal Performance of a Latent Thermal Energy Storage for Exploitation of Renewables and Waste Heat: An Experimental Investigation Based on an Asymmetric Plate Heat Exchanger
,”
Energy Convers. Manage.
,
200
, p.
112121
.
21.
Lin
,
W.
,
Zhang
,
W.
,
Ling
,
Z.
,
Fang
,
X.
, and
Zhang
,
Z.
,
2020
, “
Experimental Study of the Thermal Performance of a Novel Plate Type Heat Exchanger With Phase Change Material
,”
Appl. Therm. Eng.
,
178
, p.
115630
.
22.
Lu
,
B.
,
Zhang
,
Y.
,
Sun
,
D.
,
Yuan
,
Z.
, and
Yang
,
S.
,
2021
, “
Experimental Investigation on Thermal Behavior of Paraffin in a Vertical Shell and Spiral Fin Tube Latent Heat Thermal Energy Storage Unit
,”
Appl. Therm. Eng.
,
187
, p.
116575
.
23.
Amin
,
N. A. M.
,
Bruno
,
F.
, and
Belusko
,
M.
,
2012
, “
Effectiveness–NTU Correlation for Low Temperature PCM Encapsulated in Spheres
,”
Appl. Energy
,
93
, pp.
549
555
.
24.
Liu
,
M.
,
Tay
,
N. H. S.
,
Belusko
,
M.
, and
Bruno
,
F.
,
2015
, “
Investigation of Cascaded Shell and Tube Latent Heat Storage Systems for Solar Tower Power Plants
,”
Energy Procedia
,
69
, pp.
913
924
.
25.
Darzi
,
A. A. R.
,
Moosania
,
S. M.
,
Tan
,
F. L.
, and
Farhadi
,
M.
,
2013
, “
Numerical Investigation of Free-Cooling System Using Plate Type PCM Charging
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
155
163
.
26.
Yinping
,
Z.
,
Yi
,
J.
, and
Yi
,
J.
,
1999
, “
A Simple Method, the T–History Method, of Determining the Heat of Fusion, Specific Heat and Thermal Conductivity of Phase-Change Materials
,”
Meas. Sci. Technol.
,
10
(
3
), pp.
201
205
.
27.
Li
,
Y.
,
Zhang
,
Y.
,
Li
,
M.
, and
Zhang
,
D.
,
2012
, “
Testing Method of Phase Change Temperature and Heat of Inorganic High Temperature Phase Change Materials
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
697
707
.
28.
Ashish
,
A.
, and
Sarviya
,
R. M.
,
2017
, “
Characterization of Commercial Grade Paraffin Wax As Latent Heat Storage Material for Solar Dryers
,”
Mater. Today: Proc.
,
4
(
2
), pp.
779
789
.
29.
Wang
,
C. C.
,
Lee
,
C. J.
,
Chang
,
C. T.
, and
Lin
,
S. P.
,
1999
, “
Heat Transfer and Friction Correlation for Compact Louvered Fin and Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
1945
1956
.
30.
Zhang
,
K.
,
Li
,
M.-J.
,
Liu
,
H.
,
Xiong
,
J.-G.
, and
He
,
Y.-L.
,
2021
, “
Experimental and Numerical Study and Comparison of Performance for Herringbone Wavy Fin and Enhanced Fin With Convex-Strips in Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
175
, p.
121390
.
You do not currently have access to this content.