Abstract

A liquid water-urea mixture is stored onboard diesel vehicles and used for exhaust aftertreatment. In cold weather conditions, the mixture may freeze and the freezing process may span over a day. In the first part of our study (Journal of Thermal Science and Engineering Applications—Transactions of the ASME, Vol. 13, p. 011008, 2021), it was shown that traditional computational methods are impractical for modeling such large-duration freezing processes because of restrictions in the time-step size posed by numerical stability and physical time scale considerations. A model, in which natural convection driven thermal transport is treated as a diffusive process, was developed and demonstrated. Since the flow field was not computed in this model, the computations were found to be orders of magnitude more efficient than traditional methods. This preliminary model did not account for the expansion of ice. Here, a new model that accounts for the expansion of ice, and the consequent rise of the initial air-water/ice interface (ice dome formation) is presented. An additional conservation equation for excess volume fraction is introduced to this end and is solved using the unstructured finite-volume procedure and sub-time-stepping. Since the flow field is not computed, the air-water/ice interface is tracked using a new algorithm similar to the traditional volume-of-fluid (VOF) method, but one that constructs fluxes using a diffusive formulation rather than an advective one. Validation studies in full-scale three-dimensional tanks show good agreement with measured temperature-time data. It is found that the air-water/ice interface first evolves to a concave shape before finally becoming a convex ice dome after full solidification.

References

1.
Koebel
,
M.
,
Elsener
,
M.
, and
Kleemann
,
M.
,
2000
, “
Urea-SCR: A Promising Technique to Reduce NOx Emissions From Automotive Diesel Engines
,”
Catal. Today
,
59
(
3–4
), pp.
335
345
.
2.
aus der Wiesche
,
S.
,
2007
, “
Numerical Heat Transfer and Thermal Engineering of AdBlue (SCR) Tanks for Combustion Engine Emission Reduction
,”
Appl. Therm. Eng.
,
27
(
11–12
), pp.
1790
1798
.
3.
Choi
,
B. C.
,
Kim
,
Y. K.
,
Jhung
,
W. N.
,
Lee
,
C. H.
, and
Hwang
,
C. Y.
,
2013
, “
Experimental Investigation on Melting Characteristics of Frozen Urea–Water-Solutions for a Diesel SCR de-NOx-System
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1235
1245
.
4.
de Beeck
,
J. O.
,
Slusser
,
K.
, and
Booth
,
N.
,
2014
, “
DEF Storage and Delivery System for Operation in Extreme Winter Conditions
.”
SAE 2014 World Congress and Exhibition
,
Detroit, MI
, SAE Technical Paper No. 2014-01-1530.
5.
Stefan
,
J.
,
1891
, “
Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere
,”
Ann. Phys.
,
278
(
2
), pp.
269
286
.
6.
Minaie
,
B.
,
Stelson
,
K. A.
, and
Voller
,
V. R.
,
1991
, “
Analysis of Flow Patterns and Solidification Phenomena in the Die Casting Process
,”
ASME J. Eng. Mater. Technol.
,
113
(
3
), pp.
296
302
.
7.
Im
,
I. T.
,
Kim
,
W. S.
, and
Lee
,
K. S.
,
2001
, “
A Unified Analysis of Filling and Solidification in Casting With Natural Convection
,”
Int. J. Heat Mass Transfer
,
44
(
8
), pp.
1507
1515
.
8.
Boettinger
,
W. J.
,
Warren
,
J. A.
,
Beckermann
,
C.
, and
Karma
,
A.
,
2002
, “
Phase-Field Simulation of Solidification
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
163
194
.
9.
Tay
,
N. H. S.
,
Bruno
,
F.
, and
Belusko
,
M.
,
2012
, “
Experimental Validation of a CFD Model for Tubes in a Phase Change Thermal Energy Storage System
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
574
585
.
10.
Trp
,
A.
,
2005
, “
An Experimental and Numerical Investigation of Heat Transfer During Technical Grade Paraffin Melting and Solidification in a Shell-and-Tube Latent Thermal Energy Storage Unit
,”
Sol. Energy
,
79
(
6
), pp.
648
660
.
11.
Al-Abidi
,
A. A.
,
Mat
,
S. B.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammed
,
A. T.
,
2013
, “
CFD Applications for Latent Heat Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
20
(
C
), pp.
353
363
.
12.
Ho
,
C. J.
, and
Viskanta
,
R.
,
1983
, “
Experimental Study of Solidification Heat Transfer in an Open Rectangular Cavity
,”
ASME J. Heat Transfer-Trans. ASME
,
105
(
3
), pp.
671
673
.
13.
Jayakody
,
H.
,
Al-Dadah
,
R.
, and
Mahmoud
,
S.
,
2017
, “
Computational Fluid Dynamics Investigation on Indirect Contact Freeze Desalination
,”
Desalination
,
420
, pp.
21
33
.
14.
Akyurt
,
M.
,
Zaki
,
G.
, and
Habeebullah
,
B.
,
2002
, “
Freezing Phenomena in Ice-Water Systems
,”
Energy Convers. Manage.
,
43
(
14
), pp.
1773
1789
.
15.
Wang
,
Z.
,
Calzavarini
,
E.
,
Sun
,
C.
, and
Toschi
,
F.
,
2021
, “
How the Growth of Ice Depends on the Fluid Dynamics Underneath
,”
PNAS
,
118
(
10
), p.
e2012870118
.
16.
Knight
,
C. A.
,
2005
, “
An Exploratory Study of Ice-Cube Spikes
,”
J. Glaciol.
,
51
(
173
), pp.
191
200
.
17.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
18.
Sun
,
Y.
, and
Beckermann
,
C.
,
2007
, “
Sharp Interface Tracking Using the Phase-Field Equation
,”
J. Comput. Phys.
,
220
(
2
), pp.
626
653
.
19.
Shyy
,
W.
,
Udaykumar
,
H. S.
,
Rao
,
M. M.
, and
Smith
,
R. W.
,
2007
,
Computational Fluid Dynamics with Moving Boundaries
,
Dover Publications
,
Mineola, NY
.
20.
Hoffman
,
K. H.
,
1977
,
Fachbereich Mathematik
,
Vol. I-III
,
Berlin Freie Universitat
.
21.
Crank
,
J.
,
1987
,
Free and Moving Boundary Problems
,
Oxford University Press
,
New York
.
22.
Voller
,
V. R.
,
Cross
,
M.
, and
Walton
,
P. G.
,
1979
,
Assessment of Weak Solution Numerical Techniques for Solving Stefan Problems
,
Pineridge Press
,
Swansea, UK
, pp.
172
181
.
23.
Voller
,
V.
, and
Cross
,
M.
,
1981
, “
Accurate Solutions of Moving Boundary Problems Using the Enthalpy Method
,”
Int. J. Heat Mass Transfer
,
24
(
3
), pp.
545
556
.
24.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.
25.
Jana
,
S.
,
Ray
,
S.
, and
Durst
,
F.
,
2007
, “
A Numerical Method to Compute Solidification and Melting Processes
,”
Appl. Math. Model.
,
31
(
1
), pp.
93
119
.
26.
Zhang
,
H.
,
Prasad
,
V.
, and
Moallemi
,
M. K.
,
1996
, “
Numerical Algorithm Using Multizone Adaptive Grid Generation for Multiphase Transport Processes With Moving and Free Boundaries
,”
Numer. Heat Transf.
,
29
(
4
), pp.
399
421
.
27.
Yeoh
,
G. H.
,
Behnia
,
M.
,
De Vahl Davis
,
G.
, and
Leonardi
,
E.
,
1990
, “
A Numerical Study of Three-Dimensional Natural Convection During Freezing of Water
,”
Int. J. Numer. Methods Eng.
,
30
(
4
), pp.
899
914
.
28.
Mazumder
,
S.
,
2016
,
Numerical Methods of Partial Differential Equations: Finite Difference and Finite Volume Methods
,
Academic Press
,
New York
.
29.
Bourdillon
,
A. C.
,
Verdin
,
P. G.
, and
Thompson
,
C. P.
,
2015
, “
Numerical Simulations of Water Freezing Processes in Cavities and Cylindrical Enclosures
,”
Appl. Therm. Eng.
,
75
, pp.
839
855
.
30.
Sharma
,
R. K.
,
Ganesan
,
P.
,
Sahu
,
J. N.
,
Metselaar
,
H. S. C.
, and
Mahlia
,
T. M. I.
,
2014
, “
Numerical Study for Enhancement of Solidification of Phase Change Materials Using Trapezoidal Cavity
,”
Powder Technol.
,
268
, pp.
38
47
.
31.
Ramesh
,
V.
,
Terala
,
S.
,
Mazumder
,
S.
,
Matharu
,
G.
,
Vaishnav
,
D.
, and
Ali
,
S.
,
2021
, “
Development and Validation of a Model for Efficient Simulation of Freezing of Water in Large Tanks
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
1
), p.
011008
.
32.
Whitaker
,
S.
,
1977
,
Fundamental Principles of Heat Transfer
,
Pergamon Press
,
New York
.
33.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries
.
34.
Kell
,
G. S.
,
1975
, “
Density, Thermal Expansivity, and Compressibility of Liquid Water From 0. deg. to 150. deg. Correlations and Tables for Atmospheric Pressure and Saturation Reviewed and Expressed on 1968 Temperature Scale
,”
J. Chem. Eng. Data
,
20
(
1
), pp.
97
105
.
35.
Hobbs
,
P. V.
,
2010
,
Ice Physics
,
Oxford University Press
,
New York, NY
.
36.
Ramesh
,
V.
,
Mazumder
,
S.
,
Matharu
,
G.
,
Vaishnav
,
D.
,
Ali
,
S.
,
Lawrence
,
D.
, and
Desai
,
J.
,
2018
, “
Calibration of External Heat Transfer Coefficients During Cooling of a Partially-Filled Water Tank Using Measured Temperature-Time Data
,”
Proceedings of the IMECE2018
,
Pittsburgh, PA
,
Nov. 11–14
, Paper No. IMECE2018-86716.
You do not currently have access to this content.