Abstract

The present paper reports numerical results of the melting driven natural convection in an inclined rectangular enclosure filled with nano-enhanced phase change material (NePCM). The enclosure is heated from the bottom side by a flush-mounted heat source (microprocessor) that generates heat at a constant and uniform volumetric rate and mounted on a substrate (motherboard). All the walls are considered adiabatic. The purpose of the investigation is analyzing the effect of nanoparticles insertion by quantifying their contribution to the overall heat transfer. Combined effects of the PCM type, the inclination angle and the nanoparticles fraction on the structure of the fluid flow and heat transfer are investigated. A 2D mathematical model based on the conservation equations of mass, momentum, and energy was developed. The governing equations were integrated and discretized using the finite volume method. The SIMPLE algorithm was adopted for velocity–pressure coupling. The obtained results show that the nanoparticles insertion has an important quantitative effect on the overall heat transfer. The insertion of metallic nanoparticles with different concentrations affects the thermal behavior of the heat sink. They contribute to an efficient cooling of the heat source. The effect of nanoparticles insertion is also shown at the temperature distribution along the substrate.

References

1.
Akın
,
B. E.
,
2007
, “
A Brief Survey and Economical Analysis of Air Cooling for Electronic Equipments
,”
Int. Commun. Heat Mass Transfer
,
34
(
2
), pp.
103
113
.
2.
Saad
,
M.
,
Aaron
,
T.
,
Chin
,
T.
,
Raya
,
A.
, and
Sein
,
L.
,
2013
, “
Experimental Investigation of Inserts Configurations and PCM Type on the Thermal Performance of PCM Based Heat Sinks
,”
Appl. Energy
,
112
, pp.
1349
1356
.
3.
Bejan
,
A.
,
1995
,
Convection Heat Transfer
, 2nd ed.,
Wiley
,
New York
.
4.
Humphries
,
W.
, and
Griggs
,
E.
,
1977
,
A Design Handbook for Phase Change Thermal Control and Energy Storage Devices
,
NASA Technical Paper
,
NY
.
5.
Lidia
,
N.
,
Alvaro
,
de G.
,
Cristian
,
S.
,
Albert
,
C.
, and
Luisa
,
F. C.
,
2012
, “
Thermal Loads Inside Buildings With Phase Change Materials: Experimental Results
,”
Energy Proc.
,
30
, pp.
342
349
.
6.
Faraji
,
M.
, and
El Qarnia
,
H.
,
2010
, “
Numerical Study of Free Convection Dominated Melting in an Isolated Cavity Heated by Three Protruding Electronic Components
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
1
), pp.
167
177
.
7.
Mostaf
,
K.
, and
Sayed
,
M. M.
,
2014
, “
Improving Thermal Properties of N-Nonadecane/Expanded Dolomite Composite Phase Change Material for Thermo-Regulating Textiles
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041014
.
8.
Mjallal
,
I.
,
Farhat
,
H.
,
Hammoud
,
M.
,
Ali
,
S.
, and
Assi
,
I.
,
2018
, “
Improving the Cooling Efficiency of Heat Sinks Through the Use of Different Types of Phase Change Materials
,”
Technologies
,
6
(
1
), pp.
1
12
.
9.
Zhiwei
,
G.
,
Yongliang
,
L.
,
Dacheng
,
L.
,
Ze
,
S.
,
Yi
,
J.
,
Chuanping
,
L.
,
Chuan
,
L.
,
Guanghui
,
L.
, and
Yulong
,
D.
,
2014
, “
Thermal Energy Storage: Challenges and the Role of Particle Technology
,”
Particuology
,
15
, pp.
2
8
.
10.
Yusuke
,
T.
,
Katsuhiko
,
S.
,
Akiyoshi
,
K.
,
Ryo
,
T.
, and
Yoshihiko
,
K.
,
2016
, “
Experimental and Numerical Study on Phase Change Material (PCM) for Thermal Management of Mobile Devices
,”
Appl. Therm. Eng.
,
98
, pp.
320
329
.
11.
Xiang-Qi
,
W.
,
Christopher
,
Y.
, and
Arun
,
S. M.
,
2008
, “
A Parametric Study of Phase Change Material (PCM)-Based Heat Sinks
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
1055
1068
.
12.
Fok
,
S. C.
,
Shen
,
W.
, and
Tan
,
F. L.
,
2010
, “
Cooling of Portable Hand-Held Electronic Devices Using Phase Change Materials in Finned Heat Sinks
,”
Int. J. Therm. Sci.
,
49
(
1
), pp.
109
117
.
13.
Roberto
,
B.
,
Francesco
,
D.
,
Barbara
,
M.
, and
Carla
,
M.
,
2018
, “
Analysis of Passive Temperature Control Systems Using Phase Change Materials for Application to Secondary Batteries Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
061009
.
14.
Santosh
,
K. S.
,
Prasenjit
,
R.
, and
Mihir
,
K. D.
,
2019
, “
Solidification of Phase Change Material Nanocomposite Inside a Finned Heat Sink: A Macro Scale Model of Nanoparticles Distribution
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
4
), p.
041005
.
15.
Ebrahimi
,
A.
, and
Dadvand
,
A.
,
2015
, “
Simulation of Melting of a Nano-Enhanced Phase Change Material (NePCM) in a Square Cavity With Two Heat Source–Sink Pairs
,”
Alexandria Eng. J.
,
54
(
4
), pp.
1003
1017
.
16.
Arasu
,
A. V.
, and
Mujumdar
,
A. S.
,
2012
, “
Numerical Study on Melting of Paraffin Wax With Al2O3 in a Square Enclosure
,”
Int. Commun. Heat Mass Transfer
,
39
(
1
), pp.
8
16
.
17.
Voller
,
V. R.
,
Cross
,
M.
, and
Markatos
,
N. C.
,
1987
, “
An Enthalpy Method for Convection/Diffusion Phase Change
,”
Int. J. Numer. Methods Eng.
,
24
(
1
), pp.
271
284
.
18.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
19.
Maxwell
,
J. A.
,
1904
,
Treatise on Electricity and Magnetism
,
Oxford University Press
,
Cambridge, UK
.
20.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4675
4682
.
21.
Gau
,
C.
, and
Viskanta
,
R.
,
1985
, “
Effect of Natural Convection on Solidification From Above and Melting From Below of a Pure Metal
,”
Int. J. Heat Mass Transfer
,
28
(
3
), pp.
573
587
.
22.
Zhang
,
Y.
,
Chen
,
Z.
,
Wang
,
Q.
, and
Wu
,
Q.
,
1993
, “
Melting in an Enclosure With Discrete Heating at a Constant Rate
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
196
201
.
23.
Tummala
,
R. R.
,
2001
,
Fundamentals of Microsystems Packaging
, 1st ed,
McGraw-Hill Education
,
New York
.
24.
Fleischer
,
A. S.
,
2015
,
Thermal Energy Storage Using PCMs Fundamentals and Applications
,
Springer
,
New York, NY
.
25.
Jourabian
,
M.
,
Farhadi
,
M.
, and
Darzi
,
A. A. R.
,
2013
, “
Outward Melting of Ice Enhanced by Cu Nanoparticles Inside Cylindrical Horizontal Annulus: Lattice Boltzmann Approach
,”
Appl. Math. Model.
,
37
(
20–21
), pp.
8813
8825
.
You do not currently have access to this content.