Abstract

The heat transfer and fluid flow performance of a hybrid jet plus multipass microchannel heat sink in two-phase operation is evaluated for the cooling of a single large area, 3.61 cm2, heat source. The two-layer branching microchannel heat sink is evaluated using HFE-7100 as the coolant at three inlet volumetric flow rates of 150, 300, and 450 ml/min. The boiling performance is highest for the flow rate of 450 ml/min with the maximum heat flux value of 174 W/cm2. Critical heat flux (CHF) was observed at two of the tested flow rates, 150 and 300 ml/min, before reaching the maximum operating temperature for the serpentine heater. At 450 ml/min, the heater reached the maximum allowable temperature prior to observing CHF. The maximum pressure drop for the heat sink is 34.1 kPa at a heat flux of 164 W/cm2. Further, the peak heat transfer coefficient value of the heat sink is 28,700 W/m2 K at a heat flux value of 174 W/cm2 and a flow rate of 450 ml/min. Finally, a validated correlation of the single device cooler is presented that predicts heat transfer performance and can be utilized in the design of multidevice coolers.

References

1.
Hamada
,
K.
,
Nagao
,
M.
,
Ajioka
,
M.
, and
Kawai
,
F.
,
2015
, “
SiC–Emerging Power Device Technology for Next-Generation Electrically Powered Environmentally Friendly Vehicles
,”
IEEE Trans. Electron. Devices
,
62
(
2
), pp.
278
285
. 10.1109/TED.2014.2359240
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron. Device Lett.
,
2
(
5
), pp.
126
129
. 10.1109/EDL.1981.25367
3.
Vafai
,
K.
, and
Zhu
,
L.
,
1999
, “
Analysis of Two-Layered Micro-Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transf.
,
42
(
12
), pp.
2287
2297
. 10.1016/S0017-9310(98)00017-9
4.
Wei
,
X.
, and
Joshi
,
Y.
,
2004
, “
Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components
,”
ASME J. Electron. Packag.
,
126
(
1
), pp.
60
66
. 10.1115/1.1647124
5.
Leng
,
C.
,
Wang
,
X. D.
,
Wang
,
T. H.
, and
Yan
,
W. M.
,
2015
, “
Optimization of Thermal Resistance and Bottom Wall Temperature Uniformity for Double-Layered Microchannel Heat Sink
,”
Energy. Convers. Manage.
,
93
(
15
), pp.
141
150
. 10.1016/j.enconman.2015.01.004
6.
Wei
,
X.
,
Joshi
,
Y.
, and
Patterson
,
M. K.
,
2007
, “
Experimental and Numerical Study of a Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices
,”
ASME J. Heat Transf.
,
29
(
10
), pp.
1432
1444
. 10.1115/1.2754781
7.
Garimella
,
S. V.
, and
Rice
,
R. A.
,
1995
, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transf.
,
117
(
4
), pp.
871
877
. 10.1115/1.2836304
8.
Garimella
,
S. V.
, and
Nenaydykh
,
B.
,
1996
, “
Nozzle-Geometry Effects in Liquid Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transf.
,
39
(
14
), pp.
2915
2923
. 10.1016/0017-9310(95)00382-7
9.
Iyengar
,
M.
, and
Ellsworth
,
M.
, Jr.,
2004
, “
Design and Analysis of Direct Liquid Multi-Jet Impingement Schemes for Electronics
,”
ASME International Mechanical Engineering Congress and Exposition
, pp.
249
256
. 10.1115/imece2004-61495
10.
Overholt
,
M. R.
,
McCandless
,
A.
,
Kelly
,
K. W.
,
Becnel
,
C. J.
, and
Motakef
,
S.
,
2005
, “
Micro-Jet Arrays for Cooling of Electronic Equipment
,”
ASME 3rd International Conference on Microchannels and Minichannels
, Part B, pp.
249
252
. 10.1115/icmm2005-75250
11.
Fabbri
,
M.
, and
Dhir
,
V. K.
,
2005
, “
Optimized Heat Transfer for High Power Electronic Cooling Using Arrays of Microjets
,”
ASME J. Heat. Transf.
,
127
(
7
), pp.
760
769
. 10.1115/1.1924624
12.
Wu
,
S.-J.
,
Shin
,
C. H.
,
Kim
,
K. M.
, and
Cho
,
H. H.
,
2007
, “
Single-Phase Convection and Boiling Heat Transfer: Confined Single and Array-Circular Impinging Jets
,”
Int. J. Multiphase Flow.
,
33
(
12
), pp.
1271
1283
. 10.1016/j.ijmultiphaseflow.2007.06.005
13.
Kim
,
C.-B.
,
Leng
,
C.
,
Wang
,
X.-D.
,
Wang
,
T.-H.
, and
Yan
,
W.-M.
,
2015
, “
Effects of Slot-Jet Length on the Cooling Performance of Hybrid Microchannel/Slot-Jet Module
,”
Int. J. Heat Mass Transf.
,
89
, pp.
838
845
. 10.1016/j.ijheatmasstransfer.2015.05.108
14.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2008
, “
Single-Phase and Two-Phase Cooling Using Hybrid Micro-Channel/Slot-Jet Module
,”
Int. J. Heat Mass Transf.
,
51
(
15–16
), pp.
3825
3839
. 10.1016/j.ijheatmasstransfer.2007.12.015
15.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2009
, “
Effects of Jet Pattern on Two-Phase Performance of Hybrid Micro-Channel/Micro-Circular-Jet-Impingement Thermal Management Scheme
,”
Int. J. Heat. Mass. Transf.
,
52
(
13–14
), pp.
3364
3372
. 10.1016/j.ijheatmasstransfer.2008.06.046
16.
Joshi
,
S. N.
,
Rau
,
M. J.
, and
Dede
,
E. M.
,
2013
, “
An Experimental Study of a Single-Device Jet Impingement Cooler With Phase Change Using HFE-7100 and a Vapor Extraction Manifold
,”
ASME International Mechanical Engineering Congress and Exposition
,
San Diego, CA
,
Nov. 15–21
, p.
V08BT09A021
. 10.1115/imece2013-63249
17.
Rau
,
M. J.
,
Garimella
,
S. V.
,
Dede
,
E. M.
, and
Joshi
,
S. N.
,
2015
, “
Boiling Heat Transfer From an Array of Round Jets With Hybrid Surface Enhancements
,”
ASME J. Heat Transf.
,
137
(
7
), p.
071501
. 10.1115/1.4029969
18.
Joshi
,
S. N.
, and
Dede
,
E. M.
,
2015
, “
Effect of Sub-Cooling on Performance of a Multi-Jet Two Phase Cooler With Multi-Scale Porous Surfaces
,”
Int. J. Therm. Sci.
,
87
, pp.
110
120
. 10.1016/j.ijthermalsci.2014.08.014
19.
Jenkins
,
R.
,
Lupoi
,
R.
,
Kempers
,
R.
, and
Robinson
,
A.
,
2017
, “
Heat Transfer Performance of Boiling Jet Array Impingement on Micro-Grooved Surfaces
,”
Exp. Therm. Fluid. Sci.
,
80
, pp.
293
304
. 10.1016/j.expthermflusci.2016.08.006
20.
Harpole
,
G. M.
, and
Eninger
,
J. E.
,
1991
, “
Micro-Channel Heat Exchanger Optimization
,”
1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium
,
Phoenix, AZ
,
Feb. 12–14
, pp.
59
63
. 10.1109/stherm.1991.152913
21.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics
,”
Int. J. Heat Mass Transf.
,
117
, pp.
319
330
. 10.1016/j.ijheatmasstransfer.2017.10.015
22.
Dede
,
E. M.
,
2009
, “
Multiphysics Topology Optimization of Heat Transfer and Fluid Flow Systems
,”
COMSOL Conference
,
Boston
.
23.
Dede
,
E. M.
,
2012
, “
Optimization and Design of a Multipass Branching Microchannel Heat Sink for Electronics Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041001
. 10.1115/1.4007159
24.
Dede
,
E. M.
, and
Liu
,
Y.
,
2013
, “
Experimental and Numerical Investigation of a Multi-Pass Branching Microchannel Heat Sink
,”
Appl. Thermal Eng
,
55
(
1–2
), pp.
51
60
. 10.1016/j.applthermaleng.2013.02.038
25.
Dede
,
E. M.
,
2014
, “
Single-Phase Microchannel Cold Plate for Hybrid Vehicle Electronics
,”
2014 Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM)
,
San Jose, CA
,
Mar. 9–13
, pp.
118
124
.
26.
3M
,
2002
, “
3M Novec Engineered Fluid HFE-7100 for Heat Transfer
,”
St. Paul, MN
, pp.
1
8
.
27.
COMSOL AB
, Stockholm,
2015
, Comsol Multiphysics (version 5.2).
28.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.