Abstract

Three-dimensional Reynolds-averaged Navier–Stokes equations with shear stress transport turbulence model are used to analyze the film cooling effectiveness on a flat plate having single row of film hole involving cylindrical hole (CH) and laidback hole (LBH). The CH and LBH are inclined at 35 deg to the surface with a compound angle (β) orientation ranging from favorable to adverse inclination (i.e., β = 0–180 deg) and examined at high and low blowing ratios (M = 1.25 and 0.60). CH with an adverse compound angle of 135 deg gives the highest area-averaged film cooling effectiveness in comparison with LBH configuration. Also, CH β = 135 deg film hole shows a higher lateral coolant spread. Later, double jet film cooling (DJFC) concept is studied for this CH. In all the cases, the first hole compound angle is fixed as 135 deg, and the second hole angle is varied from 135 deg to 315 deg. At high blowing ratio, the dual jet cylindrical hole (DJCH) with β = 135 deg, 315 deg gives a higher area-averaged film cooling effectiveness by around 66.50% compared to baseline CH β = 0 deg. On comparing all CH, LBH, and DJCH cases, the highest area-averaged film cooling effectiveness is obtained by CH configuration with β = 135 deg. Hence, the CH with its adverse compound angle (β = 135 deg) orientation could be an appropriate film cooling configuration for gas turbine blade cooling.

References

1.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Advances in Heat Transfer
,
Academic Press
,
San Diego, CA
, pp.
321
379
.
2.
Ekkad
,
S.
, and
Han
,
J.-C.
,
2015
, “
A Review of Hole Geometry and Coolant Density Effect on Film Cooling
,”
Front. Heat Mass Transfer
,
6
(
8
), p.
14
.
3.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2012
, “
Turbine Film Cooling
,”
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press-Taylor & Francis Group
,
Boca Raton, FL
, Chap. 3.
4.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
5.
Kercher
,
D. M.
,
1998
, “
A Film-Cooling CFD Bibliography: 1971-1996
,”
Int. J. Rotating Mach.
,
4
(
1
), pp.
61
72
.
6.
Eckert
,
E. R. G.
,
Eriksen
,
V. L.
,
Goldstein
,
R. J.
, and
Ramsey
,
J. W.
,
1970
, “
Film Cooling Following Injection Through Inclined Circular Tubes
,”
Israel J. Technol.
,
8
(1–2), pp.
145
154
.https://ntrs.nasa.gov/search.jsp?R=19700009085
7.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
8.
Makki
,
Y. H.
, and
Jakubowski
,
G. S.
,
1986
, “
An Experimental Study of Film Cooling From Diffused Trapezoidal Shaped Holes
,”
AIAA
Paper No. 86-1326.
9.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.
10.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
224
232
.
11.
Lee
,
H. W.
,
Park
,
J. J.
, and
Lee
,
J. S.
,
2002
, “
Flow Visualization and Film Cooling Effectiveness Measurements Around Shaped Holes With Compound Angle Orientations
,”
Int. J. Heat Mass Transfer
,
45
(
1
), pp.
145
156
.
12.
Yu
,
Y.
,
Yen
,
C. H.
,
Shih
,
T. I. P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
,
2002
, “
Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
820
827
.
13.
Kim
,
Y. J.
, and
Kim
,
S. M.
,
2004
, “
Influence of Shaped Injection Holes on Turbine Blade Leading Edge Film Cooling
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
245
256
.
14.
Liu
,
C.
,
Zhu
,
H.
,
Zhang
,
Z.
, and
Xu
,
D.
,
2012
, “
Experimental Investigations on the Leading Edge Film Cooling of Cylindrical and Laid-Back Holes With Different Hole Pitches
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6832
6845
.
15.
Laveau
,
B.
, and
Abhari
,
R. S.
,
2010
, “
Influence of Flow Structure on Shaped Hole Film Cooling Performance
,”
ASME
Paper No. GT2010-23032.
16.
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics—Part II: Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
113
121
.
17.
Baheri
,
S.
,
Alavi Tabrizi
,
S. P.
, and
Jubran
,
B. A.
,
2008
, “
Film Cooling Effectiveness From Trenched Shaped and Compound Holes
,”
Heat Mass Transfer
,
44
(
8
), pp.
989
998
.
18.
Al-Adawy
,
A. S.
,
Morcos
,
S. M.
, and
Khalil
,
E. E.
,
2011
, “
On the Computations of Film Cooling in Gas Turbine Blades
,”
AIAA
Paper No. 2011-706.
19.
Ghorab
,
M. G.
,
2014
, “
Film Cooling Effectiveness and Heat Transfer Analysis of a Hybrid Scheme With Different Outlet Configurations
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
200
217
.
20.
Sugimoto
,
T.
,
Tanaka
,
R.
,
Tsuji
,
K.
,
Bohn
,
D.
, and
Kusterer
,
K.
,
2008
, “
Double Jet Film Cooling Structure
,” Japanese Patent No. JP4147239B2.
21.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.
22.
Heidmann
,
J. D.
,
2008
, “
A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio
,”
ASME
Paper No. GT2008-50845.
23.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2011
, “
The Nekomimi Cooling Technology: Cooling Holes With Ears for High Efficient Film Cooling
,”
ASME
Paper No. GT2011-45524.
24.
Han
,
C.
,
Ren
,
J.
, and
Jiang
,
H.
,
2012
, “
Multi-Parameter Influence on Combined-Hole Film Cooling System
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4232
4240
.
25.
Li
,
G.
,
Wu
,
C.
,
Zhang
,
W.
,
Kou
,
Z.
, and
Peng
,
D.
,
2012
, “
Effect of Cross-Flow Direction of Coolant on Film Cooling Effectiveness With One Inlet and Double Outlet Hole Injection
,”
Propul. Power Res.
,
1
(
1
), pp.
71
77
.
26.
Lee
,
K. D.
,
Choi
,
D. W.
, and
Kim
,
K. Y.
,
2013
, “
Optimization of Ejection Angles of Double-Jet Film-Cooling Holes Using RBNN Model
,”
Int. J. Therm. Sci.
,
73
, pp.
69
78
.
27.
Gräf
,
L.
, and
Kleiser
,
L.
,
2014
, “
Film Cooling Using Anti-Kidney Vortex Pairs: Effect of Blowing Conditions and Yaw Angle on Cooling and Losses
,”
ASME J. Turbomach.
,
136
(1), p.
011008
.
28.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2006
, “
Double-Jet Ejection of Cooling Air for Improved Film-Cooling
,”
ASME
Paper No. GT2006-90854.
29.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Influence of Blowing Ratio on the Double-Jet Ejection of Cooling Air
,”
ASME
Paper No. GT2007-27301.
30.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2008
, “
Double-Jet Film-Cooling for Highly Efficient Film-Cooling With Low Blowing Ratios
,”
ASME
Paper No. GT2008-50073.
31.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2009
, “
A Parametric Study on the Influence of the Lateral Ejection Angle of Double-Jet Holes on the Film Cooling Effectiveness for High Blowing Ratios
,”
ASME
Paper No. GT2009-59321.
32.
Kusterer
,
K.
,
Elyas
,
A.
, and
Bohn
,
D.
,
2010
, “
Film Cooling Effectiveness Comparison Between Shaped and Double Jet Film Cooling Holes in a Row Arrangement
,”
ASME
Paper No. GT2010-22604.
33.
Wang
,
Z.
,
Liu
,
J. J.
,
An
,
B. T.
, and
Zhang
,
C.
,
2011
, “
Effects of Axial Row-Spacing for Double-Jet Film-Cooling on the Cooling Effectiveness
,”
ASME
Paper No. GT2011-46055.
34.
Choi
,
D. W.
,
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2013
, “
Analysis and Optimization of Double-Jet Film-Cooling Holes
,”
J. Thermophys. Heat Transfer
,
27
(
2
), pp.
246
254
.
35.
Yao
,
J.
,
Xu
,
J.
,
Zhang
,
K.
,
Lei
,
J.
, and
Wright
,
L. M.
,
2017
, “
Interaction of Flow and Film-Cooling Effectiveness Between Double-Jet Film-Cooling Holes With Various Spanwise Distances
,”
ASME
Paper No. GT2017-63740.
36.
Wang
,
Z.
,
Liu
,
J. J.
, and
Zhang
,
C.
,
2013
, “
Impacts of Geometric Parameters of Double Jet Film Cooling on Anti-Kidney Vortex Structure and Cooling Effectiveness
,”
ASME
Paper No. GT2013-94038.
37.
Jiang
,
Y.
,
Capone
,
L.
,
Ireland
,
P.
, and
Romero
,
E.
,
2018
, “
A Detailed Study of the Interaction Between Two Rows of Cooling Holes
,”
ASME J. Turbomach.
,
140
(
4
), p.
041008
.
38.
Cho
,
M. Y.
,
Seo
,
H. S.
, and
Kim
,
Y. J.
,
2014
, “
Effect of Hole Pitch Ratio and Compound Angle on the Thermal Flow Fields of Double Jet Film Cooling Hole
,”
ASME
Paper No. FEDSM2014-21479.
39.
Bazdidi-Tehrani
,
F.
, and
Pezeshkpour
,
P.
,
2013
, “
Film Cooling Flow by Double Rows of Compound Angle and Compound Angle Shaped Holes
,”
ASME
Paper No. GT2013-95272.
40.
Khajehhasani
,
S.
, and
Jubran
,
B. A.
,
2016
, “
A Numerical Investigation of Film Cooling Performance Through Variations in the Location of Discrete Sister Holes
,”
Appl. Therm. Eng.
,
107
, pp.
345
364
.
41.
Khajehhasani
,
S.
, and
Jubran
,
B. A.
,
2016
, “
A Numerical Evaluation of the Performance of Film Cooling From a Circular Exit Shaped Hole With Sister Holes Influence
,”
Heat Transfer Eng.
,
37
(
2
), pp.
183
197
.
42.
Daly
,
B. J.
, and
Harlow
,
F. H.
,
1970
, “
Transport Equations in Turbulence
,”
Phys. Fluids
,
13
(
11
), pp.
2634
2649
.
43.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T.
,
1997
, “
Turbulence Modeling Validation
,”
AIAA
Paper No. 1997-2121.
44.
Lee
,
K. D.
,
Husain
,
A.
, and
Kim
,
K. Y.
,
2010
, “
Multi-Objective Optimization of a Laidback Fan Shaped Film-Cooling Hole Using Evolutionary Algorithm
,”
Int. J. Fluid Mach. Syst.
,
3
(
2
), pp.
150
159
.
45.
Majumdar
,
S.
,
Rodi
,
W.
, and
Zhu
,
J.
,
1992
, “
Three-Dimensional Finite Volume Method for Incompressible Flows With Complex Boundaries
,”
ASME J. Fluids Eng.
,
114
(
4
), pp.
496
503
.
46.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publications
,
Washington, DC
.
You do not currently have access to this content.