A design method for the thermoelectric cooling system is improved in this work based on a graphical approach. It is used to select an appropriate thermoelectric cooler (TEC) and determine the value of optimum input current. Theoretical analysis has been conducted to investigate the cooling performance of the system using the design method. Numerical simulation and experimental tests for the entire cooling system validate the calculation result, which indicates the high reliability of the theoretical design method. The temperature dependence of the heat sink resistance and the contact resistance are the major reasons for the small discrepancy. Research is then conducted based on the design method to investigate how a thermoelectric cooling system under natural convection performs, where the optimization of heat sinks at hot side of TEC is done by using the generalized correlations in the previous studies. Comparison is made between the thermoelectric cooling system and the bare-heat-sink system under natural convection. Results show that the thermal resistance of the heat sink attached to TEC is critical to the cooling performance of the whole system. Besides, TEC under natural convection can perform better than the passive cooling if the heat load is not very high (qc20,000W/m2). The design process and results can provide a useful guidance for other thermal engineers.

References

1.
Lineykin
,
S.
, and
Ben-Yaakov
,
S.
,
2007
, “
Modeling and Analysis of Thermoelectric Modules
,”
IEEE Trans. Ind. Appl.
,
43
(
2
), pp.
505
512
.
2.
Zhao
,
D.
, and
Tan
,
G.
,
2014
, “
A Review of Thermoelectric Cooling: Materials, Modeling and Applications
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
15
24
.
3.
Bierschenk
,
J.
, and
Gilley
,
M.
, “
Assessment of TEC Thermal and Reliability Requirements for Thermoelectrically Enhanced Heat Sinks for CPU Cooling Applications
,”
25th International Conference on Thermoelectrics
(
ICT'06
), Vienna, Austria, Aug. 6–10, pp.
254
259
.
4.
Astrain
,
D.
,
Vian
,
J.
, and
Domınguez
,
M.
,
2003
, “
Increase of COP in the Thermoelectric Refrigeration by the Optimization of Heat Dissipation
,”
Appl. Therm. Eng.
,
23
(
17
), pp.
2183
2200
.
5.
Mansour
,
K.
,
Qiu
,
Y.
,
Hill
,
C.
,
Soibel
,
A.
, and
Yang
,
R.
,
2006
, “
Mid-Infrared Interband Cascade Lasers at Thermoelectric Cooler Temperatures
,”
Electron. Lett.
,
42
(
18
), pp.
1034
1035
.
6.
Kraus
,
A. D.
,
1965
,
Cooling Electronic Equipment
,
Prentice Hall
,
Englewood Cliffs, NJ
.
7.
Phelan
,
P. E.
,
Chiriac
,
V. A.
, and
Lee
,
T.-Y.
,
2002
, “
Current and Future Miniature Refrigeration Cooling Technologies for High Power Microelectronics
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
3
), pp.
356
365
.
8.
Putra
,
N.
,
Sukyono
,
W.
,
Johansen
,
D.
, and
Iskandar
,
F. N.
,
2010
, “
The Characterization of a Cascade Thermoelectric Cooler in a Cryosurgery Device
,”
Cryogenics
,
50
(
11
), pp.
759
764
.
9.
Knopf
,
U. C.
, and
Sieber
,
J.
,
1991
, “
Laboratory Apparatus for Optional Temperature-Controlled Heating and Cooling
,” U.S. Patent No.
US5061630A
.https://patents.google.com/patent/US5061630A/en
10.
Simons
,
R.
, and
Chu
,
R.
,
2000
, “
Application of Thermoelectric Cooling to Electronic Equipment: A Review and Analysis
,”
Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 21–23, pp.
1
9
.
11.
Riffat
,
S. B.
, and
Ma
,
X.
,
2003
, “
Thermoelectrics: A Review of Present and Potential Applications
,”
Appl. Therm. Eng.
,
23
(
8
), pp.
913
935
.
12.
Minnich
,
A.
,
Dresselhaus
,
M.
,
Ren
,
Z.
, and
Chen
,
G.
,
2009
, “
Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects
,”
Energy Environ. Sci.
,
2
(
5
), pp.
466
479
.
13.
Yamanashi
,
M.
,
Kibayashi
,
Y.
,
Toyada
,
F.
, and
Azechi
,
M.
,
1996
, “
Optimum Design in Thermoelectric Cooling Systems
,”
Fifteenth International Conference on Thermoelectrics
, Pasadena, CA, Mar. 26–29, pp.
220
222
.
14.
Sharp
,
J.
,
Bierschenk
,
J.
, and
Lyon
,
H. B.
,
2006
, “
Overview of Solid-State Thermoelectric Refrigerators and Possible Applications to On-Chip Thermal Management
,”
Proc. IEEE
,
94
(
8
), pp.
1602
1612
.
15.
Jeong
,
E. S.
,
2014
, “
A New Approach to Optimize Thermoelectric Cooling Modules
,”
Cryogenics
,
59
, pp.
38
43
.
16.
Wang
,
T.-H.
,
Wang
,
Q.-H.
,
Leng
,
C.
, and
Wang
,
X.-D.
,
2015
, “
Parameter Analysis and Optimal Design for Two-Stage Thermoelectric Cooler
,”
Appl. Energy
,
154
, pp.
1
12
.
17.
Melnikov
,
A.
,
Kostishin
,
V.
, and
Alenkov
,
V.
,
2017
, “
Dimensionless Model of a Thermoelectric Cooling Device Operating at Real Heat Transfer Conditions: Maximum Cooling Capacity Mode
,”
J. Electron. Mater.
,
46
(
5
), pp.
2737
2745
.
18.
Zhang
,
H.
,
Mui
,
Y.
, and
Tarin
,
M.
,
2010
, “
Analysis of Thermoelectric Cooler Performance for High Power Electronic Packages
,”
Appl. Therm. Eng.
,
30
(
6–7
), pp.
561
568
.
19.
Taylor
,
R. A.
, and
Solbrekken
,
G. L.
,
2006
, “
Optimization of Thermoelectric Cooling for Microelectronics
,”
Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM'06
), San Diego, CA, May 30–June 2, p. 490.
20.
Zhang
,
H.
,
2010
, “
A General Approach in Evaluating and Optimizing Thermoelectric Coolers
,”
Int. J. Refrig.
,
33
(
6
), pp.
1187
1196
.
21.
David
,
B.
,
Ramousse
,
J.
, and
Luo
,
L.
,
2012
, “
Optimization of Thermoelectric Heat Pumps by Operating Condition Management and Heat Exchanger Design
,”
Energy Convers. Manage.
,
60
, pp.
125
133
.
22.
Wang
,
N.
,
Wang
,
C.-h.
,
Lei
,
J.-X.
, and
Zhu
,
D.-S.
,
2009
, “
Numerical Study on Thermal Management of LED Packaging by Using Thermoelectric Cooling
,”
International Conference on Electronic Packaging Technology & High Density Packaging
(
ICEPT-HDP'09
), Beijing, China, Aug. 10–13, pp.
433
437
.
23.
Völklein
,
F.
,
Min
,
G.
, and
Rowe
,
D.
,
1999
, “
Modelling of a Microelectromechanical Thermoelectric Cooler
,”
Sens. Actuators A: Phys.
,
75
(
2
), pp.
95
101
.
24.
Chang
,
Y.-W.
,
Chang
,
C.-C.
,
Ke
,
M.-T.
, and
Chen
,
S.-L.
,
2009
, “
Thermoelectric Air-Cooling Module for Electronic Devices
,”
Appl. Therm. Eng.
,
29
(
13
), pp.
2731
2737
.
25.
Kraus
,
A. D.
, and
Bar-Cohen
,
A.
,
1983
,
Thermal Analysis and Control of Electronic Equipment
,
Hemisphere Publishing
,
Washington, DC
, p.
633
.
26.
Khire
,
R. A.
,
Messac
,
A.
, and
Van Dessel
,
S.
,
2005
, “
Design of Thermoelectric Heat Pump Unit for Active Building Envelope Systems
,”
Int. J. Heat Mass Transfer
,
48
(
19
), pp.
4028
4040
.
27.
Chein
,
R.
, and
Huang
,
G.
,
2004
, “
Thermoelectric Cooler Application in Electronic Cooling
,”
Appl. Therm. Eng.
,
24
(
14–15
), pp.
2207
2217
.
28.
Zhou
,
Y.
, and
Yu
,
J.
,
2012
, “
Design Optimization of Thermoelectric Cooling Systems for Applications in Electronic Devices
,”
Int. J. Refrig.
,
35
(
4
), pp.
1139
1144
.
29.
Cosnier
,
M.
,
Fraisse
,
G.
, and
Luo
,
L.
,
2008
, “
An Experimental and Numerical Study of a Thermoelectric Air-Cooling and Air-Heating System
,”
Int. J. Refrig.
,
31
(
6
), pp.
1051
1062
.
30.
Seifert
,
W.
,
Ueltzen
,
M.
, and
Müller
,
E.
,
2002
, “
One‐Dimensional Modelling of Thermoelectric Cooling
,”
Phys. Status Solidi (A)
,
194
(
1
), pp.
277
290
.
31.
Fraisse
,
G.
,
Ramousse
,
J.
,
Sgorlon
,
D.
, and
Goupil
,
C.
,
2013
, “
Comparison of Different Modeling Approaches for Thermoelectric Elements
,”
Energy Convers. Manage.
,
65
, pp.
351
356
.
32.
Harahap
,
F.
,
Rudianto
,
E.
, and
Pradnyana
,
I. M. E.
,
2005
, “
Measurements of Steady-State Heat Dissipation From Miniaturized Horizontally-Based Straight Rectangular Fin Arrays
,”
Heat Mass Transfer
,
41
(
3
), pp.
280
288
.
33.
Luo
,
X.
,
Xiong
,
W.
,
Cheng
,
T.
, and
Liu
,
S.
, “
Design and Optimization of Horizontally-Located Plate Fin Heat Sink for High Power LED Street Lamps
,”
59th Electronic Components and Technology Conference
(
ECTC 2009
), San Diego, CA, May 26–29, pp.
854
859
.
34.
Lineykin
,
S.
, and
Ben-Yaakov
,
S.
,
2007
, “
User-Friendly and Intuitive Graphical Approach to the Design of Thermoelectric Cooling Systems
,”
Int. J. Refrig.
,
30
(
5
), pp.
798
804
.
35.
Chen
,
M.
, and
Snyder
,
G. J.
,
2013
, “
Analytical and Numerical Parameter Extraction for Compact Modeling of Thermoelectric Coolers
,”
Int. J. Heat Mass Transfer
,
60
, pp.
689
699
.
36.
ANSYS
,
2016
, “ANSYS 17.0 (Computer Software),” ANSYS, Inc., Canonsburg, PA.
37.
Dialameh
,
L.
,
Yaghoubi
,
M.
, and
Abouali
,
O.
,
2008
, “
Natural Convection From an Array of Horizontal Rectangular Thick Fins With Short Length
,”
Appl. Therm. Eng.
,
28
(
17–18
), pp.
2371
2379
.
38.
Tari
,
I.
, and
Mehrtash
,
M.
,
2013
, “
Natural Convection Heat Transfer From Horizontal and Slightly Inclined Plate-Fin Heat Sinks
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
728
736
.
39.
Bergman
,
T. L.
, and
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
40.
Joo
,
Y.
, and
Kim
,
S. J.
,
2015
, “
Comparison of Thermal Performance Between Plate-Fin and Pin-Fin Heat Sinks in Natural Convection
,”
Int. J. Heat Mass Transfer
,
83
, pp.
345
356
.
You do not currently have access to this content.