Abstract

Roadbed engineering in alpine tundra environment is prone to frost heave and thaw settlement, cracking of pavement, uneven settlement, and other challenges under the action of seasonal freeze-thaw cycle. Wicking geotextile has important application value in frost damage control of roadbeds, but solar radiation, especially ultraviolet radiation, is one of the main factors leading to premature failure of wicking geotextile. In this study, different kinds of ultraviolet-resistant wicking fibers were developed by blending modification technology, and the various types of fibers were compared with each other in terms of their physical and mechanical properties, so as to obtain the optimal modified wicking fibers with the content of 2 % UV-1164 + 0.3 % B900 addition. Subsequently, a 20-day accelerated aging test was conducted on modified wicking geotextiles. The inhibitory effect of the modification treatment on the wicking geotextile indicating photo-oxidative aging was characterized by scanning electron microscope, and the effect on the mechanical properties maintenance of the wicking geotextile was characterized by tensile strength and top-breaking strength tests. Finally, a soil column drainage test was designed and carried out, based on which the horizontal hydraulic conductivity rate and 120-h drainage volume of wicking geotextiles before and after the modified treatment were predicted under the aging cycle of 40 d. The test and prediction dates showed that the hydraulic conductivity was deteriorated with the aging time, but the modification treatment could obviously inhibit the deterioration degree. Compared with the control group, the hydraulic conductivity of the modified wicking geotextile increased by about 0.35E-5 g/s, and the drainage capacity increased by 0.76 % at 200 h.

References

1.
Chen
H.
,
Gao
X.
, and
Wang
Q.
, “
Research Progress and Prospect of Frozen Soil Engineering Disasters
,”
Cold Regions Science and Technology
212
(August
2023
): 103901, https://doi.org/10.1016/j.coldregions.2023.103901
2.
Yang
M.
,
Wang
X.
,
Pang
G.
,
Wan
G.
, and
Liu
Z.
, “
The Tibetan Plateau Cryosphere: Observations and Model Simulations for Current Status and Recent Changes
,”
Earth-Science Reviews
190
(March
2019
):
353
369
, https://doi.org/10.1016/j.earscirev.2018.12.018
3.
Li
H.
,
Pan
X.
,
Washakh
R. M. A.
, and
Nie
X.
, “
A New Method of Diagnosing the Historical and Projected Changes in Permafrost on the Tibetan Plateau
,”
Earth’s Future
12
, no. 
1
(January
2024
): e2023EF003897, https://doi.org/10.1029/2023EF003897
4.
Qin
Y.
,
Wu
T.
,
Zhao
L.
,
Wu
X.
,
Li
R.
,
Xie
C.
,
Pang
Q.
, et al., “
Numerical Modeling of the Active Layer Thickness and Permafrost Thermal State Across Qinghai-Tibetan Plateau
,”
Journal of Geophysical Research: Atmospheres
122
, no. 
21
(November
2017
):
11604
11620
, https://doi.org/10.1002/2017JD026858
5.
Niu
F.
,
Hu
H.
,
Liu
M.
,
Ma
Q.
, and
Su
W.
, “
Studies for Frost Heave Characteristics and the Prevention of the High-Speed Railway Roadbed in the Zoige Wetland, China
,”
Frontiers in Earth Science
9
(
2021
): 678655, https://doi.org/10.3389/feart.2021.678655
6.
Wang
L.
,
Zhang
L.
,
Wang
T.
, and
Zhang
S.
, “
Investigation of Water and Soil Migration and Mud Pumping of Subgrades under Traffic Load
,”
Atmosphere
14
, no. 
1
(January
2023
): 133, https://doi.org/10.3390/atmos14010133
7.
Farquharson
L. M.
,
Romanovsky
V. E.
,
Cable
W. L.
,
Walker
D. A.
,
Kokelj
S. V.
, and
Nicolsky
D.
, “
Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic
,”
Geophysical Research Letters
46
, no. 
12
(June
2019
):
6681
6689
, https://doi.org/10.1029/2019GL082187
8.
Liu
L.
,
Mao
X.
,
Wu
Q.
,
Liu
F.
, and
Zhao
Y.
, “
Mechanism of Groundwater Migration in the Subgrade in a Seasonally Frozen Soil Area
,”
Journal of Cold Regions Engineering
33
, no. 
4
(December
2019
): 06019001, https://doi.org/10.1061/(ASCE)CR.1943-5495.0000196
9.
Zhang
Y. Z.
,
Zhu
X. D.
,
Liu
W. L.
,
Wang
H. Y.
, and
Jiang
W.
, “
Macro- and Mesoscopic Experimental Study of the Effects of Water Content on Moisture Migration in Coarse-Grained Fillings under Freeze-Thaw Cycles and Loads
,”
Cold Regions Science and Technology
196
(April
2022
): 103491, https://doi.org/10.1016/j.coldregions.2022.103491
10.
Zhang
X.
,
Presler
W.
,
Li
L.
,
Jones
D.
, and
Odgers
B.
, “
Use of Wicking Fabric to Help Prevent Frost Boils in Alaskan Pavements
,”
Journal of Materials in Civil Engineering
26
, no. 
4
(April
2014
):
728
740
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000828
11.
Biswas
N.
,
Puppala
A. J.
,
Khan
M. A.
,
Congress
S. S. C.
,
Banerjee
A.
, and
Chakraborty
S.
, “
Evaluating the Performance of Wicking Geotextile in Providing Drainage for Flexible Pavements Built over Expansive Soils
,”
Transportation Research Record
2675
, no. 
9
(September
2021
):
208
221
, https://doi.org/10.1177/03611981211001381
12.
Zornberg
J. G.
,
Azevedo
M.
,
Sikkema
M.
, and
Odgers
B.
, “
Geosynthetics with Enhanced Lateral Drainage Capabilities in Roadway Systems
,”
Transportation Geotechnics
12
(September
2017
):
85
100
, https://doi.org/10.1016/j.trgeo.2017.08.008
13.
Iryo
T.
and
Rowe
R. K.
, “
On the Hydraulic Behavior of Unsaturated Nonwoven Geotextiles
,”
Geotextiles and Geomembranes
21
, no. 
6
(December
2003
):
381
404
, https://doi.org/10.1016/S0266-1144(03)00046-3
14.
Jana
A.
and
Dey
A.
, “
Combined Functioning of Geotextile as Barrier and Drainage Material in Unsaturated Earth Retaining Structures
,”
Indian Geotechnical Journal
48
, no. 
2
(June
2018
):
342
359
, https://doi.org/10.1007/s40098-017-0268-0
15.
Xiong
J.
,
Jiang
Q.
, and
Zhang
C.
, “
Experiments for Enhancing Tailings Slurry Drainage and Geotechnical Performance Using Nonsegregation Flocculation and Geotextile
,”
Journal of Testing and Evaluation
49
, no. 
4
(July
2021
):
2742
2756
, https://doi.org/10.1520/JTE20200404
16.
Bai
M.
,
Liu
Z.-B.
,
Zhang
S.-J.
,
Liu
F.
, and
Lei
S.-L.
, “
Drainage Performance and Capillary Rise Restraint Effect of Wicking Geotextile
,”
Journal of Central South University
28
, no. 
10
(October
2021
):
3260
3267
, https://doi.org/10.1007/s11771-021-4835-2
17.
Lin
C.
and
Zhang
X.
, “
Laboratory Drainage Performance of a New Geotextile with Wicking Fabric
,”
Journal of Materials in Civil Engineering
30
, no. 
11
(November
2018
): 04018293, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002476
18.
Wang
F.
,
Han
J.
,
Zhang
X.
, and
Guo
J.
, “
Laboratory Tests to Evaluate Effectiveness of Wicking Geotextile in Soil Moisture Reduction
,”
Geotextiles and Geomembranes
45
, no. 
1
(February
2017
):
8
13
, https://doi.org/10.1016/j.geotexmem.2016.08.002
19.
Carneiro
J. R.
,
Carlos
D. M.
, and
de Lurdes Lopes
M.
, “
Laboratory Degradation of a Reinforcement PET-PP Geocomposite under Accelerated Weathering Conditions
,”
International Journal of Geosynthetics and Ground Engineering
7
, no. 
3
(September
2021
): 71, https://doi.org/10.1007/s40891-021-00315-5
20.
Bo
H.
and
Yuesi
W.
, “
The Attenuation Effect on Ultraviolet Radiation Caused by Aerosol and Cloud in Lhasa, Tibetan Plateau of China
,”
Advances in Space Research
56
, no. 
1
(July
2015
):
111
118
, https://doi.org/10.1016/j.asr.2015.03.026
21.
Peng
S.
,
Du
Q.
,
Wang
L.
,
Lin
A.
, and
Hu
B.
, “
Long-Term Variations of Ultraviolet Radiation in Tibetan Plateau from Observation and Estimation
,”
International Journal of Climatology
35
, no. 
7
(June
2015
):
1245
1253
, https://doi.org/10.1002/joc.4051
22.
Bilbao
J.
and
de Miguel
A.
, “
Estimation of UV-B Irradiation from Total Global Solar Meteorological Data in Central Spain
,”
Journal of Geophysical Research: Atmospheres
115
, no. 
D1
(January
2010
): D00I09, https://doi.org/10.1029/2009JD012505
23.
Tu
H.
,
Li
D.
,
Yi
Y.
,
Liu
R.
,
Wu
Y.
,
Dong
X.
,
Shi
X.
, and
Deng
H.
, “
Incorporation of Rectorite into Porous Polycaprolactone/TiO2 Nanofibrous Mats for Enhancing Photocatalysis Properties towards Organic Dye Pollution
,”
Composites Communications
15
(October
2019
):
58
63
, https://doi.org/10.1016/j.coco.2019.06.006
24.
Xu
Y.
,
Sheng
J.
,
Yin
X.
,
Yu
J.
, and
Ding
B.
, “
Functional Modification of Breathable Polyacrylonitrile/Polyurethane/TiO2 Nanofibrous Membranes with Robust Ultraviolet Resistant and Waterproof Performance
,”
Journal of Colloid and Interface Science
508
(December
2017
):
508
516
, https://doi.org/10.1016/j.jcis.2017.08.055
25.
Abidi
N.
,
Cabrales
L.
, and
Hequet
E.
, “
Functionalization of a Cotton Fabric Surface with Titania Nanosols: Applications for Self-Cleaning and UV-Protection Properties
,”
ACS Applied Materials & Interfaces
1
, no. 
10
(October
2009
):
2141
2146
, https://doi.org/10.1021/am900315t
26.
Zhao
X.
,
Wang
C.
,
Ding
Z.
,
Babar
A.
,
Wei
H.
,
Wang
X.
,
Yu
J.
, and
Ding
B.
, “
Tailoring High Anti-UV Performance Polypropylene Based Geotextiles with Homogeneous Waterborne Polyurethane-TiO2 Composite Emulsions
,”
Composites Communications
22
(December
2020
): 100529, https://doi.org/10.1016/j.coco.2020.100529
27.
Carneiro
J. R.
and
Lopes
M. L.
, “
Natural Weathering of Polypropylene Geotextiles Treated with Different Chemical Stabilisers
,”
Geosynthetics International
24
, no. 
6
(December
2017
):
544
553
, https://doi.org/10.1680/jgein.17.00020
28.
Du
H.
,
Wang
W.
,
Wang
Q.
,
Sui
S.
, and
Song
Y.
, “
Effects of Ultraviolet Absorbers on the Ultraviolet Degradation of Rice-Hull/High-Density Polyethylene Composites
,”
Journal of Applied Polymer Science
126
, no. 
3
(November
2012
):
906
915
, https://doi.org/10.1002/app.36558
29.
Mamnicka
J.
and
Czajkowski
W.
, “
New Fiber-Reactive UV-Absorbers Increasing Protective Properties of Cellulose Fibres
,”
Cellulose
19
, no. 
5
(October
2012
):
1781
1790
, https://doi.org/10.1007/s10570-012-9753-x
30.
Zhang
Q.
,
Leroux
F.
,
Tang
P.
,
Li
D.
, and
Feng
Y.
, “
Low Molecular Weight Hindered Amine Light Stabilizers (HALS) Intercalated MgAl-Layered Double Hydroxides: Preparation and Anti Aging Performance in Polypropylene Nanocomposites
,”
Polymer Degradation and Stability
154
(August
2018
):
55
61
, https://doi.org/10.1016/j.polymdegradstab.2018.05.027
31.
Zhou
X.
,
Huang
S.
, and
Chen
L.
, “
Effect of Antiaging Agents on the Outdoor Natural Weathering of Bamboo Powder/Polypropylene Foamed Composites
,”
Journal of Vinyl and Additive Technology
22
, no. 
3
(September
2016
):
311
319
, https://doi.org/10.1002/vnl.21433
32.
Rowe
R. K.
,
Abdelaal
F. B.
, and
Brachman
R. W. I.
, “
Antioxidant Depletion of HDPE Geomembrane with Sand Protection Layer
,”
Geosynthetics International
20
, no. 
2
(April
2013
):
73
89
, https://doi.org/10.1680/gein.13.00003
33.
Rowe
R. K.
and
Rimal
S.
, “
Aging of HDPE Geomembrane in Three Composite Landfill Liner Configurations
,”
Journal of Geotechnical and Geoenvironmental Engineering
134
, no. 
7
(July
2008
):
906
916
, https://doi.org/10.1061/(ASCE)1090-0241(2008)134:7(906)
34.
Aparicio-Ardila
M. A.
,
Pedroso
G. O. M.
,
Kobelnik
M.
,
Valentin
C. A.
,
da Luz
M. P.
, and
da Silva
J. L.
, “
Evaluating the Degradation of a Nonwoven Polypropylene Geotextile Exposed to Natural Weathering for 3 Years
,”
International Journal of Geosynthetics and Ground Engineering
7
, no. 
3
(September
2021
): 69, https://doi.org/10.1007/s40891-021-00314-6
35.
Franco
Y. B.
,
Valentin
C. A.
,
Kobelnik
M.
,
Lins da Silva
J.
,
Ribeiro
C. A.
, and
da Luz
M. P.
, “
Accelerated Aging Ultraviolet of a PET Nonwoven Geotextile and Thermoanalytical Evaluation
,”
Materials
15
, no. 
12
(June
2022
): 4157, https://doi.org/10.3390/ma15124157
36.
Thakur
R. N.
,
Gupta
S. K.
,
Sinha
A.
,
Chawla
S.
, and
Vadavadagi
S. S.
, “
A Durability Study of Jute Geotextile Treated with Bitumen Emulsion
,”
Journal of Natural Fibers
18
, no. 
3
(March
2021
):
400
418
, https://doi.org/10.1080/15440478.2019.1623749
37.
Bai
X.
,
Li
F.
,
Ma
L.
, and
Li
C.
, “
Weathering of Geotextiles under Ultraviolet Exposure: A Neglected Source of Microfibers from Coastal Reclamation
,”
Science of the Total Environment
804
(January
2022
): 150168, https://doi.org/10.1016/j.scitotenv.2021.150168
38.
Jie
S. Y.
,
Hoe
L. Z.
,
Paul
S. C.
, and
Anggraini
V.
, “
Characterizing the Tensile Behaviour of Woven and Composite Fabrics under UV Exposure
,”
Applied Sciences
12
, no. 
22
(November
2022
): 11440, https://doi.org/10.3390/app122211440
39.
Carneiro
J. R.
,
Almeida
P. J.
, and
de Lurdes Lopes
M.
, “
Evaluation of the Resistance of a Polypropylene Geotextile Against Ultraviolet Radiation
,”
Microscopy and Microanalysis
25
, no. 
1
(February
2019
):
196
202
, https://doi.org/10.1017/S1431927618000430
40.
Gillen
K. T.
and
Celina
M.
, “
Predicting Polymer Degradation and Mechanical Property Changes for Combined Radiation-Thermal Aging Environments
,”
Rubber Chemistry and Technology
91
, no. 
1
(January–March
2018
):
27
63
, https://doi.org/10.5254/rct.18.81679
41.
Tan
W.
,
Fu
F.
,
Wang
F.-F.
,
Li
Y.
,
Wang
P.
, and
Zhang
D.
, “
The Mechanical and Ultraviolet Aging Properties of Needle-Punched Nonwoven Geotextiles Made with Recycled Fibers
,”
Journal of Industrial Textiles
51
, no. 
5
Suppl (June
2022
):
8668S
8689S
, https://doi.org/10.1177/1528083720921580
42.
Valentin
C. A.
,
Kobelnik
M.
,
Franco
Y. B.
,
Lavoie
F. L.
,
da Silva
J. L.
, and
da Luz
M. P.
, “
Study of the Ultraviolet Effect and Thermal Analysis on Polypropylene Nonwoven Geotextile
,”
Materials
14
, no. 
5
(March
2021
): 1080, https://doi.org/10.3390/ma14051080
43.
Bertin
D.
,
Leblanc
M.
,
Marque
S. R. A.
, and
Siri
D.
, “
Polypropylene Degradation: Theoretical and Experimental Investigations
,”
Polymer Degradation and Stability
95
, no. 
5
(May
2010
):
782
791
, https://doi.org/10.1016/j.polymdegradstab.2010.02.006
44.
García-Gil
A.
,
Molina-Ramírez
M. D.
,
García-Muñoz
R. A.
,
Marasini
R.
,
Buck
L.
,
McGuigan
K. G.
, and
Marugán
J.
, “
Weathering of Plastic SODIS Containers and the Impact of Aging on Their Lifetime and Disinfection Efficacy
,”
Chemical Engineering Journal
435
, Part 1 (May
2022
): 134881, https://doi.org/10.1016/j.cej.2022.134881
45.
Rizvi
A.
,
Andalib
Z. K. M.
, and
Park
C. B.
, “
Fiber-Spun Polypropylene/Polyethylene Terephthalate Microfibrillar Composites with Enhanced Tensile and Rheological Properties and Foaming Ability
,”
Polymer
110
(February
2017
):
139
148
, https://doi.org/10.1016/j.polymer.2016.12.054
46.
Oliveira
M.
,
Santos
E.
,
Araújo
A.
,
Fechine
G. J. M.
,
Machado
A. V.
, and
Botelho
G.
, “
The Role of Shear and Stabilizer on PLA Degradation
,”
Polymer Testing
51
(May
2016
):
109
116
, https://doi.org/10.1016/j.polymertesting.2016.03.005
47.
Zeynalov
E. B.
and
Allen
N. S.
, “
Modelling Light Stabilizers as Thermal Antioxidants
,”
Polymer Degradation and Stability
91
, no. 
12
(December
2006
):
3390
3396
, https://doi.org/10.1016/j.polymdegradstab.2006.05.020
48.
Chow
W. S.
and
Lim
S. R.
, “
Effects of N,N′-Ethylenebis(stearamide) on the Properties of Poly(ethylene terephthalate)/Organo-montmorillonite Nanocomposite
,”
Polymer-Plastics Technology and Engineering
52
, no. 
6
(
2013
):
626
633
, https://doi.org/10.1080/03602559.2012.762663
49.
Matxinandiarena
E.
,
Múgica
A.
,
Zubitur
M.
,
Yus
C.
,
Sebastián
V.
,
Irusta
S.
,
Loaeza
A. D.
, et al., “
The Effect of Titanium Dioxide Surface Modification on the Dispersion, Morphology, and Mechanical Properties of Recycled PP/PET/TiO2 PBNANOs
,”
Polymers
11
, no. 
10
(October
2019
): 1692, https://doi.org/10.3390/polym11101692
50.
Fechine
G. J. M.
,
Rabello
M. S.
,
Souto Maior
R. M.
, and
Catalani
L. H.
, “
Surface Characterization of Photodegraded Poly(ethylene terephthalate). The Effect of Ultraviolet Absorbers
,”
Polymer
45
, no. 
7
(March
2004
):
2303
2308
, https://doi.org/10.1016/j.polymer.2004.02.003
51.
Vasylius
M.
,
Tadžijevas
A.
,
Šapalas
D.
,
Kartašovas
V.
,
Janutėnienė
J.
, and
Mažeika
P.
, “
Degradation of Mechanical Properties of A-PET Films after UV Aging
,”
Polymers
15
, no. 
20
(October
2023
): 4166, https://doi.org/10.3390/polym15204166
52.
Pan
D.
,
Liu
S.
,
Wang
L.
,
Sun
J.
,
Chen
L.
, and
Sun
B.
, “
Surface Structured Polymer Blend Fibers and Their Application in Fiber Reinforced Composite
,”
Materials
13
, no. 
19
(October
2020
): 4279, https://doi.org/10.3390/ma13194279
53.
He
M.
,
Sawut
A.
,
Guan
L.
,
Li
Y.
, and
Yimit
M.
, “
Study on the Weathering Performance of Polypropylene by Artificial Accelerated Aging and Natural Aging
,”
Journal of Polymer Materials
38
, nos. 
3–4
(July–December
2021
):
191
203
, https://doi.org/10.32381/JPM.2021.38.3-4.2
54.
Ottersböck
B.
,
Oreski
G.
, and
Pinter
G.
, “
How to Accelerate Natural Weathering of Polymeric Photovoltaic Backsheets – A Comparison with Standardized Artificial Aging
,”
Solar Energy Materials and Solar Cells
244
(August
2022
): 111819, https://doi.org/10.1016/j.solmat.2022.111819
This content is only available via PDF.
You do not currently have access to this content.