Abstract

The variation of the maximum tensile stress in each cycle with cycle number during the initial stage of low-cycle fatigue test before crack initiation was investigated based on the theoretically derived relation that is valid before crack initiates. The experimental data were fitted well by the proposed semiempirical expressions with four, three, or two fitting parameters, which were applicable to a large range of cycle numbers. The semiempirical expression with just one fitting parameter was only applicable to a small range of cycle numbers when the maximum tensile stress in each cycle did not fall below 85 % of the maximum one that appeared, which can be used as a guideline for the initial stage before crack initiation at low temperatures.

References

1.
Morales-Espejel
G. E.
,
Rycerz
P.
, and
Kadiric
A.
, “
Prediction of Micropitting Damage in Gear Teeth Contacts Considering the Concurrent Effects of Surface Fatigue and Mild Wear
,”
Wear
398–399
(March
2018
):
99
115
, https://doi.org/10.1016/j.wear.2017.11.016
2.
Bagde
M. N.
and
Petroš
V.
, “
Waveform Effect on Fatigue Properties of Intact Sandstone in Uniaxial Cyclical Loading
,”
Rock Mechanics and Rock Engineering
38
, no. 
3
(
2005
):
169
196
, https://doi.org/10.1007/s00603-005-0045-8
3.
Mahdavi
H.
,
Rahimi
G.
, and
Farrokhabadi
A.
, “
Fatigue Performance Analysis of GRE Composite Pipes by Conducting Tension-Tension Tests on the Rings Cut from the Pipe
,”
Journal of Testing and Evaluation
. Published ahead of print, August 13,
2019
, https://doi.org/10.1520/JTE20180948
4.
Morishita
T.
,
Itoh
T.
, and
Bao
Z.
, “
Multiaxial Fatigue Strength of Type 316 Stainless Steel under Push–Pull, Reversed Torsion, Cyclic Inner and Outer Pressure Loading
,”
International Journal of Pressure Vessels and Piping
139–140
(March–April
2016
):
228
236
, https://doi.org/10.1016/j.ijpvp.2016.02.024
5.
Ogawa
F.
,
Itoh
T.
, and
Yamamoto
T.
, “
Evaluation of Multiaxial Low Cycle Fatigue Cracks in Sn-8Zn-3Bi Solder under Non-proportional Loading
,”
International Journal of Fatigue
110
(May
2018
):
215
224
, https://doi.org/10.1016/j.ijfatigue.2018.01.021
6.
Jin
D.
,
Tian
D. J.
,
Li
J. H.
, and
Sakane
M.
, “
Low-Cycle Fatigue of 316L Stainless Steel under Proportional and Nonproportional Loadings
,”
Fatigue & Fracture of Engineering Materials & Structures
39
, no. 
7
(
2016
):
850
858
, https://doi.org/10.1111/ffe.12399
7.
Qu
W. L.
,
Zhao
E. N.
,
Zhou
Q.
, and
Pi
Y.-L.
, “
Multiaxial Low-Cycle Fatigue Life Evaluation under Different Non-proportional Loading Paths
,”
Fatigue & Fracture of Engineering Materials & Structures
41
, no. 
5
(
2018
):
1064
1076
, https://doi.org/10.1111/ffe.12752
8.
Meneses-Amador
A.
,
Sandoval-Juárez
D.
,
Rodríguez-Castro
G. A.
,
Fernández-Valdés
D.
,
Campos-Silva
I.
,
Vega-Morón
R. C.
, and
Arciniega-Martínez
J. L.
, “
Contact Fatigue Performance of Cobalt Boride Coatings
,”
Surface and Coatings Technology
353
(November
2018
):
346
354
, https://doi.org/10.1016/j.surfcoat.2018.07.104
9.
Nikulin
I.
,
Sawaguchi
T.
,
Kushibe
A.
,
Inoue
Y.
,
Otsuka
H.
, and
Tsuzaki
K.
, “
Effect of Strain Amplitude on the Low-Cycle Fatigue Behavior of a New Fe–15Mn–10Cr–8Ni–4Si Seismic Damping Alloy
,”
International Journal of Fatigue
88
(July
2016
):
132
141
, https://doi.org/10.1016/j.ijfatigue.2016.03.021
10.
He
L.
,
Akebono
H.
,
Kato
M.
, and
Sugeta
A.
, “
Fatigue Life Prediction Method for AISI 316 Stainless Steel under Variable-Amplitude Loading Considering Low-Amplitude Loading Below the Endurance Limit in the Ultrahigh Cycle Regime
,”
International Journal of Fatigue
101
, part
1
(August
2017
):
18
26
, https://doi.org/10.1016/j.ijfatigue.2017.04.006
11.
Wang
X.
,
Zhang
W.
,
Gong
J.
, and
Jiang
Y.
, “
Experimental and Numerical Characterization of Low Cycle Fatigue and Creep Fatigue Behaviour of P92 Steel Welded Joint
,”
Fatigue & Fracture of Engineering Materials & Structures
41
, no. 
3
(
2018
):
611
624
, https://doi.org/10.1111/ffe.12722
12.
Linul
E.
,
Şerban
D. A.
,
Marsavina
L.
, and
Kovacik
J.
, “
Low-Cycle Fatigue Behaviour of Ductile Closed-Cell Aluminium Alloy Foams
,”
Fatigue & Fracture of Engineering Materials & Structures
40
, no. 
4
(
2017
):
597
604
, https://doi.org/10.1111/ffe.12535
13.
Prasad Reddy
G. V.
,
Kannan
R.
,
Mariappan
K.
,
Sandhya
R.
,
Sankaran
S.
, and
Bhanu Sankara Rao
K.
, “
Effect of Strain Rate on Low Cycle Fatigue of 316LN Stainless Steel with Varying Nitrogen Content: Part-I Cyclic Deformation Behavior
,”
International Journal of Fatigue
81
(December
2015
):
299
308
, https://doi.org/10.1016/j.ijfatigue.2015.07.033
14.
Prasad Reddy
G. V.
,
Mariappan
K.
,
Kannan
R.
,
Sandhya
R.
,
Sankaran
S.
, and
Bhanu Sankara Rao
K.
, “
Effect of Strain Rate on Low Cycle Fatigue of 316LN Stainless Steel with Varying Nitrogen Content: Part-II Fatigue Life and Fracture
,”
International Journal of Fatigue
81
(December
2015
):
309
317
, https://doi.org/10.1016/j.ijfatigue.2015.07.034
15.
Michler
T.
,
Naumann
J.
,
Wiebesiek
J.
, and
Sattler
E.
, “
Influence of Frequency and Wave Form on S-N Fatigue of Commercial Austenitic Stainless Steels with Different Nickel Contents in Inert Gas and in High Pressure Gaseous Hydrogen
,”
International Journal of Fatigue
96
(March
2017
):
67
77
, https://doi.org/10.1016/j.ijfatigue.2016.11.026
16.
Pessoa
D. F.
,
Kirchhoff
G.
, and
Zimmermann
M.
, “
Influence of Loading Frequency and Role of Surface Micro-defects on Fatigue Behavior of Metastable Austenitic Stainless Steel AISI 304
,”
International Journal of Fatigue
103
(October
2017
):
48
59
, https://doi.org/10.1016/j.ijfatigue.2017.05.018
17.
Chen
X.
,
Bu
J.
,
Fan
X.
,
Lu
J.
, and
Xu
L.
, “
Effect of Loading Frequency and Stress Level on Low Cycle Fatigue Behavior of Plain Concrete in Direct Tension
,”
Construction and Building Materials
133
(February
2017
):
367
375
, https://doi.org/10.1016/j.conbuildmat.2016.12.085
18.
Böhm
E.
,
Kurek
M.
, and
Łagoda
T.
, “
Fatigue Damage Accumulation Model of 6082-T6 Aluminum Alloy in Conditions of Block Bending and Torsion
,”
Journal of Testing and Evaluation
48
, no. 
6
(November
2020
):
4416
4434
, https://doi.org/10.1520/JTE20170598
19.
Morishita
T.
and
Itoh
T.
, “
Evaluation of Multiaxial Low Cycle Fatigue Life for Type 316L Stainless Steel Notched Specimen under Non-proportional Loading
,”
Theoretical and Applied Fracture Mechanics
84
(August
2016
):
98
105
, https://doi.org/10.1016/j.tafmec.2016.02.007
20.
Glodež
S.
,
Vucković
K.
,
Šori
M.
,
Surjak
M.
, and
Zupanič
F.
, “
The Influence of Thermal Treatment on the Low-Cycle Fatigue Behaviour of Cu-Ni-Mo Sintered Steel
,”
Mechanics of Materials
129
(January
2019
):
57
62
, https://doi.org/10.1016/j.mechmat.2018.11.001
21.
Kumar
P.
and
Singh
A.
, “
Experimental and Numerical Investigations of Cyclic Plastic Deformation of Al-Mg Alloy
,”
Journal of Materials Engineering and Performance
28
, no. 
3
(
2019
):
1428
1440
, https://doi.org/10.1007/s11665-019-03906-6
22.
Kanayama
H.
,
Konishi
Y.
,
Ogawa
F.
,
Itoh
T.
,
Sakane
M.
,
Yamashita
M.
, and
Hokazono
H.
, “
Effect of Additional Elements on the Low-Cycle-Fatigue Characteristics of Sn-1.0Ag-0.7Cu Solder Obtained Using a Miniature-Sized Specimen
,”
International Journal of Fatigue
116
(November
2018
):
180
191
, https://doi.org/10.1016/j.ijfatigue.2018.06.023
23.
Meng
Y.
,
Gao
L.
,
Gao
H.
, and
Yuan
X.
, “
Effect of Precompression Deformation on the Strain-Controlled Low-Cycle Fatigue Behavior of Extruded AZ31 Magnesium Alloy
,”
Journal of Materials Engineering and Performance
28
, no. 
2
(
2019
):
1007
1018
, https://doi.org/10.1007/s11665-018-3839-z
24.
AlSumait
A.
,
Li
Y.
,
Weaser
M.
,
Niji
K.
,
Battel
G.
,
Toal
R.
,
Alvarez
C.
, and
Es-Said
O. S.
, “
A Comparison of the Fatigue Life of Shot-Peened 4340M Steel with 100, 200, and 300 % Coverage
,”
Journal of Materials Engineering and Performance
28
, no. 
3
(
2019
):
1780
1789
, https://doi.org/10.1007/s11665-019-03891-w
25.
Wang
A.
,
Liu
Z.
,
Liu
M.
,
Wu
W.
,
Bai
S.
, and
Yang
R.
, “
Texture and Tempered Condition Combined Effects on Fatigue Behavior in an Al-Cu-Li Alloy
,”
Journal of Materials Engineering and Performance
26
, no. 
6
(
2017
):
2453
2458
, https://doi.org/10.1007/s11665-017-2727-2
26.
Ghosh
R.
,
Venugopal
A.
,
Rao
G. S.
,
Ramesh Narayanan
P.
,
Pant
B.
, and
Cherian
R. M.
, “
Effect of Temper Condition on the Corrosion and Fatigue Performance of AA2219 Aluminum Alloy
,”
Journal of Materials Engineering and Performance
27
, no. 
2
(
2018
):
423
433
, https://doi.org/10.1007/s11665-018-3125-0
27.
Ben-Amoz
M.
, “
Bounds on Fatigue Damage: Relation to Microstructure Dependent Crack Growth: I. Constant Amplitude Cyclic Damage
,”
International Journal of Fracture
124
, no. 
3
(
2003
):
153
177
, https://doi.org/10.1023/B:FRAC.0000018235.84208.e1
28.
Yeratapally
S. R.
,
Hochhalter
J. D.
,
Ruggles
T. J.
, and
Sangid
M. D.
, “
Investigation of Fatigue Crack Incubation and Growth in Cast MAR-M247 Subjected to Low Cycle Fatigue at Room Temperature
,”
International Journal of Fracture
208
, no. 
1
(
2017
):
79
96
, https://doi.org/10.1007/s10704-017-0213-3
29.
Morrison
D. J.
and
Moosbrugger
J. C.
, “
Effects of Grain Size on Cyclic Plasticity and Fatigue Crack Initiation in Nickel
,”
International Journal of Fatigue
19
, no. 
93
(
1997
):
51
59
, https://doi.org/10.1016/S0142-1123(97)00034-0
30.
McDowell
D. L.
and
Dunne
F. P. E.
, “
Microstructure-Sensitive Computational Modeling of Fatigue Crack Formation
,”
International Journal of Fatigue
32
, no. 
9
(
2010
):
1521
1542
, https://doi.org/10.1016/j.ijfatigue.2010.01.003
31.
Chan
K. S.
, “
Roles of Microstructure in Fatigue Crack Initiation
,”
International Journal of Fatigue
32
, no. 
9
(
2010
):
1428
1447
, https://doi.org/10.1016/j.ijfatigue.2009.10.005
32.
Sweeney
C. A.
,
O’Brien
B.
,
Dunne
F. P. E.
,
McHugh
P. E.
, and
Leen
S. B.
, “
Strain-Gradient Modelling of Grain Size Effects on Fatigue of CoCr Alloy
,”
Acta Materialia
78
(October
2014
):
341
353
, https://doi.org/10.1016/j.actamat.2014.06.044
33.
Liu
L.
,
Meng
J.
,
Liu
J.
,
Jin
T.
,
Sun
X.
, and
Zhang
H.
, “
Effects of Crystal Orientations on the Cyclic Deformation Behavior in the Low Cycle Fatigue of a Single Crystal Nickel-Base Superalloy
,”
Materials & Design
131
(October
2017
):
441
449
, https://doi.org/10.1016/j.matdes.2017.06.047
34.
Arzt
E.
, “
Size Effects in Materials Due to Microstructural and Dimensional Constraints: A Comparative Review
,”
Acta Materialia
46
, no. 
16
(
1998
):
5611
5626
, https://doi.org/10.1016/S1359-6454(98)00231-6
35.
Gil Sevillano
J.
,
Ocaña Arizcorreta
I.
, and
Kubin
L. P.
, “
Intrinsic Size Effects in Plasticity by Dislocation Glide
,”
Materials Science and Engineering: A
309–310
(July
2001
):
393
405
, https://doi.org/10.1016/S0921-5093(00)01733-0
36.
Straßberger
L.
,
Chauhan
A.
,
Gräning
T.
,
Czink
S.
, and
Aktaa
J.
, “
High-Temperature Low-Cycle Fatigue Behavior of Novel Austenitic ODS Steels
,”
International Journal of Fatigue
93
, part
1
(
2016
):
194
200
, https://doi.org/10.1016/j.ijfatigue.2016.08.018
37.
Sarkar
A.
,
Nagesha
A.
,
Parameswaran
P.
,
Sandhya
R.
,
Laha
K.
, and
Okazaki
M.
, “
Evolution of Damage under Combined Low and High Cycle Fatigue Loading in a Type 316LN Stainless Steel at Different Temperatures
,”
International Journal of Fatigue
103
(October
2017
):
28
38
, https://doi.org/10.1016/j.ijfatigue.2017.05.012
38.
Zhao
Y.
,
Zhai
X.
, and
Liu
S.
, “
Low Cycle Fatigue Properties of CLAM Steel at 450 °C and 550 °C
,”
Fusion Engineering and Design
112
(November
2016
):
213
217
, https://doi.org/10.1016/j.fusengdes.2016.08.015
39.
Cai
C.
,
Geng
H.
,
Cui
Q.
,
Wang
S.
, and
Zhang
Z.
, “
Low Cycle Fatigue Behavior of AlSi10Mg(Cu) Alloy at High Temperature
,”
Materials Characterization
145
(November
2018
):
594
605
, https://doi.org/10.1016/j.matchar.2018.09.023
40.
Pohl
K.
,
Mayr
P.
, and
Macherauch
E.
, “
Cyclic Deformation Behavior of a Low Carbon Steel in the Temperature Range between Room Temperature and 850 K
,”
International Journal of Fracture
17
, no. 
2
(
1981
):
221
233
, https://doi.org/10.1007/BF00053521
41.
Li
L.
, “
Synergistic Effects of Temperature, Oxidation and Stress Level on Fatigue Damage Evolution and Lifetime Prediction of Cross-Ply SiC/CAS Ceramic-Matrix Composites through Hysteresis-Based Parameters
,”
Journal of Materials Engineering and Performance
26
, no. 
12
(
2017
):
5681
5693
, https://doi.org/10.1007/s11665-017-3028-5
42.
Dalhat
M.
and
Al-Abdul Wahhab
H.
, “
Temperature Wave Fatigue Damage and Dissipated Energy Approach to Flow Number Estimation of Asphalt Concrete
,”
Journal of Testing and Evaluation
48
, no. 
5
(September
2020
):
3801
3816
, https://doi.org/10.1520/JTE20170752
43.
Hong
J.-D.
,
Jang
C.
, and
Kim
T. S.
, “
Effects of Mixed Strain Rates on Low Cycle Fatigue Behaviors of Austenitic Stainless Steels in a Simulated PWR Environment
,”
International Journal of Fatigue
82
, part
2
(
2016
):
292
299
, https://doi.org/10.1016/j.ijfatigue.2015.06.021
44.
Liu
F.
,
Liu
Z.
,
Liu
M.
,
Hu
Y.
,
Chen
Y.
, and
Bai
S.
, “
Texture Evolution and Its Effect on Fatigue Crack Propagation in Two 2000 Series Alloys
,”
Journal of Materials Engineering and Performance
28
, no. 
3
(
2019
):
1324
1336
, https://doi.org/10.1007/s11665-019-03894-7
45.
Zai
B.
,
Khan
M.
,
Khan
S.
,
Asif
M.
,
Khan
K.
,
Saquib
A.
,
Mansoor
A.
,
Shahzad
M.
, and
Mujtaba
A.
, “
Prediction of Crack Depth and Fatigue Life of an Acrylonitrile Butadiene Styrene Cantilever Beam Using Dynamic Response
,”
Journal of Testing and Evaluation
48
, no. 
2
(
2020
):
1520
1536
, https://doi.org/10.1520/JTE20180674
46.
Sowards
J. W.
,
Pfeif
E. A.
,
Connolly
M. J.
,
McColskey
J. D.
,
Miller
S. L.
,
Simonds
B. J.
, and
Fekete
J. R.
, “
Low-Cycle Fatigue Behavior of Fiber-Laser Welded, Corrosion-Resistant, High-Strength Low Alloy Sheet Steel
,”
Materials & Design
121
(May
2017
):
393
405
, https://doi.org/10.1016/j.matdes.2017.02.065
47.
Gallo
P.
,
Bressan
S.
,
Morishita
T.
,
Itoh
T.
, and
Berto
F.
, “
Analysis of Multiaxial Low Cycle Fatigue of Notched Specimens for Type 316L Stainless Steel under Non-proportional Loading
,”
Theoretical and Applied Fracture Mechanics
89
(June
2017
):
79
89
, https://doi.org/10.1016/j.tafmec.2017.01.009
48.
Li
D.-F.
,
Barrett
R. A.
,
O’Donoghue
P. E.
,
O’Dowd
N. P.
, and
Leen
S. B.
, “
A Multi-scale Crystal Plasticity Model for Cyclic Plasticity and Low-Cycle Fatigue in a Precipitate-Strengthened Steel at Elevated Temperature
,”
Journal of the Mechanics and Physics of Solids
101
(
2017
):
44
62
, https://doi.org/10.1016/j.jmps.2016.12.010
49.
Huang
H. W.
,
Wang
Z. B.
,
Lu
J.
, and
Lu
K.
, “
Fatigue Behaviors of AISI 316L Stainless Steel with a Gradient Nanostructured Surface Layer
,”
Acta Materialia
87
(April
2015
):
150
160
, https://doi.org/10.1016/j.actamat.2014.12.057
50.
Manonukul
A.
and
Dunne
F. P. E.
, “
High- and Low-Cycle Fatigue Crack Initiation Using Polycrystal Plasticity
,”
Proceedings of the Royal Society A
460
, no. 
2047
(
2004
):
1881
1903
, https://doi.org/10.1098/rspa.2003.1258
51.
Zheng
X. T.
,
Wu
K. W.
,
Wang
W.
,
Yu
J. Y.
,
Xu
J. M.
, and
Ma
L. W.
, “
Low Cycle Fatigue and Ratcheting Behavior of 35CrMo Structural Steel at Elevated Temperature
,”
Nuclear Engineering and Design
314
(April
2017
):
285
292
, https://doi.org/10.1016/j.nucengdes.2017.01.016
52.
Algarni
M.
,
Choi
Y.
, and
Bai
Y.
, “
A Unified Material Model for Multiaxial Ductile Fracture and Extremely Low Cycle Fatigue of Inconel 718
,”
International Journal of Fatigue
96
(March
2017
):
162
177
, https://doi.org/10.1016/j.ijfatigue.2016.11.033
53.
Albinmousa
J.
, “
On the Application of Polar Representation for Investigating High and Low Cycle Fatigue of Metals
,”
International Journal of Fatigue
100
, part
2
(
2017
):
639
649
, https://doi.org/10.1016/j.ijfatigue.2016.12.014
54.
Zhou
T.
,
Dong
S. L.
,
Zhao
G. F.
,
Zhang
R.
,
Wu
S. Y.
, and
Zhu
J. B.
, “
An Experimental Study of Fatigue Behavior of Granite under Low-Cycle Repetitive Compressive Impacts
,”
Rock Mechanics and Rock Engineering
51
, no. 
10
(
2018
):
3157
3166
, https://doi.org/10.1007/s00603-018-1515-0
55.
Zhang
H.
,
Li
P.
,
Wang
Q.
, and
Liu
Y.
, “
Fatigue Crack Propagation of Nickel-Based Superalloy: Experiments and Simulations with Extended Finite Element Method
,”
Journal of Materials Engineering and Performance
28
, no. 
2
(
2019
):
967
972
, https://doi.org/10.1007/s11665-018-3818-4
56.
Dong
Y.
,
Yao
X.
,
Li
J.
,
Shen
Y.
,
Wu
R.
, and
Ke
Y.
, “
Fatigue Crack Initiation Life Prediction of the Rubber Damper Based on Seq-N Curve of Rubber Material
,”
Journal of Testing and Evaluation
49
, no. 
2
(March
2021
):
933
948
, https://doi.org/10.1520/JTE20180666
57.
Narynbek Ulu
K.
,
Huneau
B.
,
Verron
E.
,
Béranger
A.
, and
Heuillet
P.
, “
On the Use of Cox Regression for Statistical Analysis of Fatigue Life Results
,”
Journal of Testing and Evaluation
48
, no. 
2
(March
2020
):
1439
1451
, https://doi.org/10.1520/JTE20180541
58.
Ma
L.
,
Luo
Y.
,
Wang
Y.
,
Du
W.
, and
Zhang
J.
, “
Constitutive and Damage Modelling of H11 Subjected to Low-Cycle Fatigue at High Temperature
,”
Fatigue & Fracture of Engineering Materials & Structures
40
, no. 
12
(
2017
):
2107
2117
, https://doi.org/10.1111/ffe.12632
59.
Park
J.
,
Lee
S.
,
Han
S.
, and
Kim
Y.
, “
Fatigue Behavior of Roller-Compacted Concrete Pavement Based on Full-Scale Fatigue Test
,”
Journal of Testing and Evaluation
48
, no. 
4
(July
2020
):
2895
2907
, https://doi.org/10.1520/JTE20170522
60.
Chen
B.
,
Chen
Z.
,
Xie
X.
, and
Ye
X.
, “
Fatigue Performance Evaluation for an Orthotropic Steel Bridge Deck Based on Field Hotspot Stress Measurements
,”
Journal of Testing and Evaluation
48
, no. 
2
(March
2020
):
1175
1187
, https://doi.org/10.1520/JTE20180565
61.
Nicholas
T.
and
Zuiker
J. R.
, “
On the Use of the Goodman Diagram for High Cycle Fatigue Design
,”
International Journal of Fracture
80
, no. 
2
(
1996
):
219
235
, https://doi.org/10.1007/BF00012670
62.
Roman
I.
and
Ono
K.
, “
Model for Fracture Toughness Alteration Due to Cyclic Loading
,”
International Journal of Fracture
19
, no. 
1
(
1982
):
67
80
, https://doi.org/10.1007/BF00012493
63.
Henry
T.
,
Johnson
T.
,
Haynes
R.
, and
Tran
A.
, “
Fatigue Performance of Polyamide 12 Additively Manufactured Structures Designed with Topology Optimization
,”
Journal of Testing and Evaluation
49
, no. 
3
(May/June
2021
):
1797
1813
, https://doi.org/10.1520/JTE20180793
64.
Zhao
N.-L.
,
Wang
W.-Z.
,
Zhang
J.-H.
, and
Liu
Y.-Z.
, “
Numerical Investigation on Life Improvement of Low-Cycle Fatigue for an Ultra-Supercritical Steam Turbine Rotor
,”
Journal of Mechanical Science and Technology
30
, no. 
4
(
2016
):
1747
1754
, https://doi.org/10.1007/s12206-016-0330-3
65.
Xu
T.
,
Tang
C.
,
Zhao
J.
,
Li
L.
, and
Heap
M. J.
, “
Modelling the Time-Dependent Rheological Behaviour of Heterogeneous Brittle Rocks
,”
Geophysical Journal International
189
, no. 
3
(
2012
):
1781
1796
, https://doi.org/10.1111/j.1365-246X.2012.05460.x
66.
Lee
K.-O.
and
Lee
S.-B.
, “
A Comparison of Methods for Predicting the Fatigue Life of Gray Cast Iron at Elevated Temperatures
,”
Fatigue & Fracture of Engineering Materials & Structures
39
, no. 
4
(
2016
):
439
452
, https://doi.org/10.1111/ffe.12368
67.
Imran
M.
,
Siddique
S.
,
Guchinsky
R.
,
Petinov
S.
, and
Walther
F.
, “
Comparison of Fatigue Life Assessment by Analytical, Experimental and Damage Accumulation Modelling Approach for Steel SAE 1045
,”
Fatigue & Fracture of Engineering Materials & Structures
39
, no. 
9
(
2016
):
1138
1149
, https://doi.org/10.1111/ffe.12426
68.
Ashraf
Q. J.
,
Prasad
R. G. V.
,
Sandhya
R.
,
Laha
K.
, and
Harmain
G. A.
, “
Simulation of Low Cycle Fatigue Stress-Strain Response in 316LN Stainless Steel Using Non-linear Isotropic Kinematic Hardening Model—A Comparison of Different Approaches
,”
Fatigue & Fracture of Engineering Materials & Structures
41
, no. 
2
(
2018
):
336
347
, https://doi.org/10.1111/ffe.12683
69.
Lu
Y.
,
Wu
H.
, and
Zhong
Z.
, “
A Simple Energy-Based Model for Nonproportional Low-Cycle Multiaxial Fatigue Life Prediction under Constant-Amplitude Loading
,”
Fatigue & Fracture of Engineering Materials & Structures
41
, no. 
6
(
2018
):
1402
1411
, https://doi.org/10.1111/ffe.12785
70.
Chen
X.
and
Solaimanian
M.
, “
Simple Indexes to Identify Fatigue Performance of Asphalt Concrete
,”
Journal of Testing and Evaluation
48
, no. 
5
(September
2020
):
3999
4015
, https://doi.org/10.1520/JTE20170722
71.
Gao
C.
,
Yao
L.
, and
Liu
M.
, “
Measurement of Sample Tilt by Residual Imprint Morphology of Berkovich Indenter
,”
Journal of Testing and Evaluation
48
, no. 
4
(July
2020
):
3012
3023
, https://doi.org/10.1520/jte20180136
72.
Gao
C.
and
Liu
M.
, “
Effect of Sample Tilt on Measurement of Friction Coefficient by Constant-Load Scratch Testing of Copper with a Spherical Indenter
,”
Journal of Testing and Evaluation
48
, no. 
2
(March
2020
):
970
989
, https://doi.org/10.1520/JTE20180719
73.
Gao
C.
,
Yao
L.
,
Zheng
R.
, and
Liu
M.
, “
Effect of Sample Tilt on Spherical Indentation of an Elastic Solid
,”
Journal of Testing and Evaluation
47
, no. 
4
(July
2018
):
2596
2612
, https://doi.org/10.1520/jte20170579
74.
Zhu
G.
,
Dong
X.
,
Gao
C.
, and
Liu
M.
, “
Effects of Sample Tilt on Berkovich Nanoindentation Test of Fused Silica
,”
Acta Metrologica Sinica
40
, no. 
2
(
2019
):
289
294
, https://doi.org/10.3969/j.issn.1000-1158.2019.02.19
75.
Liu
M.
,
Zhu
G.
,
Dong
X.
,
Liao
J.
, and
Gao
C.
, “Effects of Sample Tilt on Vickers Indentation Hardness,” in
Advanced Mechanical Science and Technology for the Industrial Revolution 4.0
, ed.
Yao
L.
,
Zhong
S.
,
Kikuta
H.
,
Juang
J.-G.
, and
Anpo
M.
(
Singapore
:
Springer
,
2017
),
271
283
, https://doi.org/10.1007/978-981-10-4109-9_28
76.
Gao
C.
,
Proudhon
H.
, and
Liu
M.
, “
Three-Dimensional Finite Element Analysis of Shallow Indentation of Rough Strain-Hardening Surface
,”
Friction
7
, no. 
6
(
2019
):
587
602
, https://doi.org/10.1007/s40544-018-0245-3
77.
Taylor
G. I.
, “
The Mechanism of Plastic Deformation of Crystals. Part I.—Theoretical
,”
Proceedings of the Royal Society A
145
, no. 
855
(
1934
):
362
387
, https://doi.org/10.1098/rspa.1934.0106
78.
Mecking
H.
and
Kocks
U. F.
, “
Kinetics of Flow and Strain-Hardening
,”
Acta Metallurgica
29
, no. 
11
(
1981
):
1865
1875
, https://doi.org/10.1016/0001-6160(81)90112-7
79.
Sauzay
M.
,
Brillet
H.
,
Monnet
I.
,
Mottot
M.
,
Barcelo
F.
,
Fournier
B.
, and
Pineau
A.
, “
Cyclically Induced Softening Due to Low-Angle Boundary Annihilation in a Martensitic Steel
,”
Materials Science and Engineering: A
400–401
(July
2005
):
241
244
, https://doi.org/10.1016/j.msea.2005.02.092
80.
Hu
X.
,
Huang
L.
,
Yan
W.
,
Wang
W.
,
Sha
W.
,
Shan
Y.
, and
Yang
K.
, “
Low Cycle Fatigue Properties of CLAM Steel at 823 K
,”
Materials Science and Engineering: A
613
(September
2014
):
404
413
, https://doi.org/10.1016/j.msea.2014.06.069
81.
Okamura
H.
,
Ohtani
R.
,
Saito
K.
,
Kimura
K.
,
Ishii
R.
,
Fujiyama
K.
,
Hongo
S.
,
Iseki
T.
, and
Uchida
H.
, “
Basic Investigation for Life Assessment Technology of Modified 9Cr–1Mo Steel
,”
Nuclear Engineering and Design
193
, no. 
3
(
1999
):
243
254
, https://doi.org/10.1016/S0029-5493(99)00181-8
82.
Sangid
M. D.
, “
The Physics of Fatigue Crack Initiation
,”
International Journal of Fatigue
57
(December
2013
):
58
72
, https://doi.org/10.1016/j.ijfatigue.2012.10.009
83.
Gao
C.
,
Ren
T.
, and
Liu
M.
, “
Low-Cycle Fatigue Characteristics of Cr18Mn18N0.6 Austenitic Steel under Strain Controlled Condition at 100 °C
,”
International Journal of Fatigue
118
(January
2019
):
35
43
, https://doi.org/10.1016/j.ijfatigue.2018.08.038
84.
Surzhenko
I.
,
Glavatska
N.
, and
Berns
H.
, “
Texture Formation and Anisotropy of Mechanical Properties of Retaining Rings Made of Austenitic CrMnN Steel
,”
Materialwissenschaft und Werkstofftechnik
36
, no. 
2
(
2005
):
51
55
, https://doi.org/10.1002/mawe.200400848
85.
Islam
M. N.
,
Arai
Y.
, and
Araki
W.
, “
Use of Ultrasonic Back-Reflection Intensity for Predicting the Onset of Crack Growth Due to Low-Cycle Fatigue in Stainless Steel under Block Loading
,”
Ultrasonics
56
(February
2015
):
354
360
, https://doi.org/10.1016/j.ultras.2014.09.001
86.
He
C.
,
Tian
R.-H.
,
Liu
Y.-J.
,
Li
J.-K.
, and
Wang
Q.-Y.
, “
Ultrasonic Fatigue Damage Behavior of 304L Austenitic Stainless Steel Based on Micro-plasticity and Heat Dissipation
,”
Journal of Iron and Steel Research International
22
, no. 
7
(
2015
):
638
644
, https://doi.org/10.1016/S1006-706X(15)30051-0
87.
Skelton
R. P.
, ed.,
High Temperature Fatigue: Properties and Prediction
(
Dordrecht, the Netherlands: Elsevier Applied Science
,
1987
).
88.
Klesnil
M.
and
Lukáš
P.
,
Fatigue of Metallic Materials
(
New York
:
Elsevier
,
1992
).
89.
Stephens
R. I.
,
Fatemi
A.
,
Stephens
R. R.
, and
Fuchs
H. O.
,
Metal Fatigue in Engineering
, 2nd ed. (
Hoboken, NJ
:
John Wiley & Sons
,
2000
).
90.
Essmann
U.
and
Mughrabi
H.
, “
Annihilation of Dislocations during Tensile and Cyclic Deformation and Limits of Dislocation Densities
,”
Philosophical Magazine A
40
, no. 
6
(
1979
):
731
756
, https://doi.org/10.1080/01418617908234871
91.
Choudhary
B. K.
,
Bhanu Sankara Rao
K.
, and
Mannan
S. L.
, “
High Temperature Low Cycle Fatigue Properties of a Thick-Section 9wt.%Cr-1wt.%Mo Ferritic Steel Forging
,”
Materials Science and Engineering: A
148
, no. 
2
(
1991
):
267
278
, https://doi.org/10.1016/0921-5093(91)90829-C
92.
Chopra
O. K.
,
Mechanism and Estimation of Fatigue Crack Initiation in Austenitic Stainless Steels in LWR Environments, Argonne National Lab Report NUREG/CR-6787 ANL-01/25
(Washington, DC: US Nuclear Regulatory Commission,
2002
).
93.
Dowling
N. E.
, “Crack Growth during Low-Cycle Fatigue of Smooth Axial Specimens,” in
Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth
, ed.
Impellizzeri
L.
(
West Conshohocken, PA
:
ASTM International
,
1977
),
97
121
, https://doi.org/10.1520/STP27990S
94.
Impellizzeri
L.
, ed.,
Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth
(
West Conshohocken, PA
:
ASTM International
,
1977
), https://doi.org/10.1520/STP637-EB
95.
He
C.
,
Wu
Y.
,
Peng
L.
,
Su
N.
,
Li
X.
,
Yang
K.
,
Liu
Y.
,
Yuan
S.
, and
Tian
R.
, “
Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg-Gd–Y-Zr Alloy
,”
Materials
11
, no. 
12
(
2018
): 2429, https://doi.org/10.3390/ma11122429
This content is only available via PDF.
You do not currently have access to this content.