Abstract

In this paper, crack growth tests on 19501 aluminum alloy friction stir welded butt joints after a single overload cycle in tension or in compression on compact tension (CT) specimens, along with constant amplitude tests, are investigated. The effect of the tensile overload or compressive overload applied just after 20,000 load cycles on the crack growth rate, crack growth path, and growth profile are investigated. The overload cycle exhibits a significant influence on fatigue life endurance. Increases of 39.14 % and 131.58 % in fatigue life with delayed cycles of 13,874 and 46,646 are seen because of the application of 1.78 times tension or compression overload. The crack propagation after overload cycles is investigated by inspection of the fatigue crack propagation rate. Results are discussed with reference to the retardation characteristic parameters, such as retardation ratio, plastic zone size, crack deviation, etc. Compressive overload is found to be more effective in retarding the growth rates compared to tensile overload of the same magnitude in friction stir welded joints. Secondary crack formation is seen after the tensile overload, whereas no such secondary crack formation is observed with compressive overload. The possible reasons for the crack growth behavior due to tensile or compressive overload are further analyzed in terms of scanning electron micrographs and plastic zone size.

References

1.
Lee
,
E.W.
,
Chakrabortty
,
S.B.
, and
Starke
,
E.A.
, “
The Effect of Overload on the Fatigue Crack Propagation in Metastable Beta Ti-V Alloys
,”
Metall. Trans. A
, Vol. 
15
, No. 
3
,
1984
, pp. 
511
517
, https://doi.org/10.1007/BF02644975
2.
Elber
,
W.
, “
Fatigue Crack Closure Under Cyclic Tension
,”
Eng. Fract. Mech.
, Vol. 
2
, No. 
1
,
1970
, pp. 
37
45
, https://doi.org/10.1016/0013-7944(70)90028-7
3.
Schijve
,
J.
and
Broek
,
D.
, “
Crack Propagation: The Results of a Test Program Based on a Gust Spectrum with Variable Amplitude Loading
,”
Aircr. Eng. Aerosp. Technol.
, Vol. 
34
, No. 
11
,
1962
, pp. 
314
316
, https://doi.org/10.1108/eb033633
4.
Elber
,
W.
, “
The Significance of Fatigue Crack Closure
,”
Damage Tolerance in Aircraft Structures, ASTM STP486
,
Rosenfeld
M.S.
, Ed.,
ASTM International
,
West Conshohocken
,
PA
,
1971
, pp. 
230
242
.
5.
Suresh
,
S.
, “
Micromechanisms of Fatigue Crack Growth Retardation Following Overloads
,”
Eng. Fract. Mech.
, Vol. 
18
, No. 
3
,
1983
, pp. 
577
593
, https://doi.org/10.1016/0013-7944(83)90051-6
6.
Jones
,
R.E.
, “
Fatigue Crack Growth Retardation After Single-Cycle Peak Overload in Ti-6Al-4V Titanium Alloy
,”
Eng. Fract. Mech.
, Vol. 
5
, No. 
3
,
1973
, pp. 
589
604
.
7.
Carlson
,
R.L.
,
Kardomateas
,
G.A.
, and
Bates
,
P.R.
, “
The Effects of Overloads in Fatigue Crack Growth
,”
Int. J. Fatigue
, Vol. 
13
, No. 
6
,
1991
, pp. 
453
460
, https://doi.org/10.1016/0142-1123(91)90479-I
8.
Codrington
,
J.
and
Kotousov
,
A.
, “
A Crack Closure Model of Fatigue Crack Growth in Plates of Finite Thickness Under Small-Scale Yielding Conditions
,”
Mech. Mater.
, Vol. 
41
, No. 
2
,
2009
, pp. 
165
173
, https://doi.org/10.1016/j.mechmat.2008.10.002
9.
Espinosa
,
A.A. A.
,
Fellows
,
N.A.
, and
Durodola
,
J.F.
, “
Experimental Measurement of Crack Opening and Closure Loads for 6082-T6 Aluminium Subjected to Periodic Single and Block Overloads and Underloads
,”
Int. J. Fatigue
, Vol. 
47
,
2013
, pp. 
71
82
, https://doi.org/10.1016/j.ijfatigue.2012.07.010
10.
Borrego
,
L.P.
,
Costa
,
J.D.
, and
Ferreira
,
J.A. M.
, “
Crack Propagation of 7050 Aluminum Alloy Under Constant Amplitude Loading and Peak Overloads
,”
Procedia Eng.
, Vol. 
114
,
2015
, pp. 
613
620
, https://doi.org/10.1016/j.proeng.2015.08.112
11.
Silva
,
F.S.
, “
The Importance of Compressive Stresses on Fatigue Crack Propagation Rate
,”
Int. J. Fatigue
, Vol. 
27
, Nos.
10–12
,
2005
, pp. 
1441
1452
, https://doi.org/10.1016/j.ijfatigue.2005.07.003
12.
Borrego
,
L.F.
,
Ferreira
,
J.A. M.
,
Pinho da Cruz
,
J.M.
, and
Costa
J.D. M.
, “
Evaluation of Overload Effects on Fatigue Crack Growth and Closure
,”
Eng. Fract. Mech.
, Vol. 
70
, No. 
11
,
2003
, pp. 
1379
1397
, https://doi.org/10.1016/S0013-7944(02)00119-4
13.
Ward-Close
,
C.M.
and
Ritchie
,
R.O.
, “On the Role of Crack Closure Mechanisms in Influencing Fatigue Crack Growth Following Tensile Overloads in Titanium Alloys,”
Mechanisms of Fatigue Crack Closure, ASTM STP982
,
Newman
J.C.
and
Elber
W.
, Eds.,
ASTM International
,
Philadelphia
,
PA
,
1988
, pp. 
93
111
.
14.
McEvily
,
A.J.
and
Yang
,
Z.
, “
Fatigue Crack Growth Retardation Mechanisms of Single and Multiple Overloads
,”
presented at the Fourth International Conference on Fatigue and Fatigue Thresholds
,
Honolulu, HI
, July 15–20, 1990,
MCEP
, Birmingham, UK, pp. 
23
36
.
15.
Matsuoka
,
S.
and
Tanaka
,
K.
, “
Delayed Retardation Phenomenon of Fatigue Crack Growth Resulting from a Single Application of Overload
,”
Eng. Fract. Mech.
, Vol. 
10
, No. 
3
,
1978
, pp. 
515
525
, https://doi.org/10.1016/0013-7944(78)90061-9
16.
Matsuoka
,
S.
,
Tanaka
,
K.
, and
Kahawara
,
M.
, “
The Retardation Phenomenon of Fatigue Crack Growth in HT80 Steel
,”
Eng. Fract. Mech.
, Vol. 
8
, No. 
3
,
1976
, pp. 
507
523
, https://doi.org/10.1016/0013-7944(76)90005-9
17.
Corbly
,
D.M.
and
Packman
,
P.F.
, “
On the Influence of Single and Multiple Peak Overloads on Fatigue Crack Propagation in 7075-T6511 Aluminum
,”
Eng. Fract. Mech.
, Vol. 
5
, No. 
2
,
1973
, pp. 
479
497
, https://doi.org/10.1016/0013-7944(73)90034-9
18.
Vardar
,
Ö.
, “
Effect of Single Overload in FCP
,”
Eng. Fract. Mech.
, Vol. 
30
, No. 
3
,
1988
, pp. 
329
335
, https://doi.org/10.1016/0013-7944(88)90191-9
19.
Bathias
,
C.
and
Vancon
,
M.
, “
Mechanisms of Overload Effect on Fatigue Crack Propagation in Aluminium
,”
Eng. Fract. Mech.
, Vol. 
10
, No. 
2
,
1978
, pp. 
409
424
, https://doi.org/10.1016/0013-7944(78)90021-8
20.
Robin
,
C.
and
Pelloux
,
R.M.
, “
Fatigue Crack Growth Retardation in an Aluminum Alloy
,”
Mater. Sci. Eng.
, Vol. 
44
, No. 
1
,
1980
, pp. 
115
120
, https://doi.org/10.1016/0025-5416(80)90236-0
21.
Harmain
,
G.A.
, “
A Model for Predicting the Retardation Effect Following a Single Overload
,”
Theor. Appl. Fract. Mech.
, Vol. 
53
, No. 
1
,
2010
, pp. 
80
88
, https://doi.org/10.1016/j.tafmec.2009.12.008
22.
Kumar
,
R.
and
Garg
,
S.B. L.
, “
Effect of Periodic Bands of Overloads on Crack Closure
,”
Int. J. Press. Vessels Pip.
, Vol. 
38
, No. 
1
,
1989
, pp. 
27
37
, https://doi.org/10.1016/0308-0161(89)90129-4
23.
McMaster
,
F.J.
and
Smith
,
D.J.
, “
Predictions of Fatigue Crack Growth in Aluminum Alloy 2024-T351 Using Constraint Factors
,”
Int. J. Fatigue
, Vol. 
23
, Supp. 1,
2001
, pp. 
93
101
, https://doi.org/10.1016/S0142-1123(01)00134-7
24.
Manjunatha
,
C.M.
and
Parida
,
B.K.
, “
Prediction of Fatigue Crack Growth After Single Overload in an Aluminum Alloy
,”
AIAA J.
, Vol. 
42
, No. 
8
,
2004
, pp. 
1536
1542
, https://doi.org/10.2514/1.880
25.
Dai
,
P.
,
Li
,
S.
, and
Li
,
Z.
, “
The Effects of Overload on the Fatigue Crack Growth in Ductile Materials Predicted by Plasticity-Corrected Stress Intensity Factor
,”
Eng. Fract. Mech.
, Vol. 
111
,
2013
, pp. 
26
37
, https://doi.org/10.1016/j.engfracmech.2013.09.002
26.
Sadananda
,
K.
,
Vasudevan
,
A.K.
,
Holtz
,
R.L.
, and
Lee
,
E.U.
, “
Analysis of Overload Effects and Related Phenomena
,”
Int. J. Fatigue
, Vol. 
21
, Supp. 1,
1999
, pp. 
233
246
, https://doi.org/10.1016/S0142-1123(99)00094-8
27.
Nowell
,
D.
and
de Matos
,
P.F. P.
, “
Application of Digital Image Correlation to the Investigation of Crack Closure Following Overloads
,”
Procedia Eng.
, Vol. 
2
, No. 
1
,
2010
, pp. 
1035
1043
, https://doi.org/10.1016/j.proeng.2010.03.112
28.
Zhou
,
X.
,
Gaenser
,
H.-P.
, and
Pippan
,
R.
, “
The Effect of Single Overloads in Tension and Compression on the Fatigue Crack Propagation Behaviour of Short Cracks
,”
Int. J. Fatigue
, Vol. 
89
,
2016
, pp. 
77
86
, https://doi.org/10.1016/j.ijfatigue.2016.02.001
29.
Vasco-Olmo
,
J.M.
and
Díaz
,
F.A.
, “
Experimental Evaluation of the Effect of Overloads on Fatigue Crack Growth by Analysing Crack Tip Displacement Fields
,”
Eng. Fract. Mech.
, Vol. 
166
,
2016
, pp. 
82
96
, https://doi.org/10.1016/j.engfracmech.2016.08.026
30.
Chen
,
C.
,
Ye
,
D.
,
Zhang
,
L.
, and
Liu
,
J.
, “
Effects of Tensile/Compressive Overloads on Fatigue Crack Growth Behavior of an Extra-Low-Interstitial Titanium Alloy
,”
Int. J. Mech. Sci.
, Vol. 
118
,
2016
, pp. 
55
66
, https://doi.org/10.1016/j.ijmecsci.2016.09.014
31.
Kujawski
,
D.
, “
A Fatigue Crack Driving Force Parameter with Load Ratio Effects
,”
Int. J. Fatigue
, Vol. 
23
, Supp. 1,
2001
, pp. 
239
246
, https://doi.org/10.1016/S0142-1123(01)00158-X
32.
Lee
,
S.Y.
,
Liaw
,
P.K.
,
Choo
,
H.
, and
Rogge
,
R.B.
, “
A Study on Fatigue Crack Growth Behavior Subjected to a Single Tensile Overload: Part I. An Overload-Induced Transient Crack Growth Micromechanism
,”
Acta Mater.
, Vol. 
59
, No. 
2
,
2011
, pp. 
485
494
, https://doi.org/10.1016/j.actamat.2010.09.049
33.
Lee
,
S.Y.
,
Choo
,
H.
,
Liaw
,
P.K.
,
An
,
K.
, and
Hubbard
,
C.R.
, “
A Study on Fatigue Crack Growth Behavior Subjected to a Single Tensile Overload: Part II. Transfer of Stress Concentration and its Role in Overload-Induced Transient Crack Growth
,”
Acta Mater.
, Vol. 
59
, No. 
2
,
2011
, pp. 
495
502
, https://doi.org/10.1016/j.actamat.2010.09.048
34.
Yusof
,
F.
,
Lopez-Crespo
,
P.
, and
Withers
,
P.J.
, “
Effect of Overload on Crack Closure in Thick and Thin Specimens via Digital Image Correlation
,”
Int. J. Fatigue
, Vol. 
56
,
2013
, pp. 
17
24
, https://doi.org/10.1016/j.ijfatigue.2013.07.002
35.
Kalnaus
,
S.
,
Fan
,
F.
,
Vasudevan
,
A.K.
, and
Jiang
,
Y.
, “
An Experimental Investigation on Fatigue Crack Growth of AL6XN Stainless Steel
,”
Eng. Fract. Mech.
, Vol. 
75
, No. 
8
,
2008
, pp. 
2002
2019
, https://doi.org/10.1016/j.engfracmech.2007.11.002
36.
Kalnaus
,
S.
,
Fan
,
F.
,
Jiang
,
Y.
, and
Vasudevan
,
A.K.
, “
An Experimental Investigation of Fatigue Crack Growth of Stainless Steel 304L
,”
Int. J. Fatigue
, Vol. 
31
, No. 
5
,
2009
, pp. 
840
849
, https://doi.org/10.1016/j.ijfatigue.2008.11.004
37.
Zhao
,
T.
,
Zhang
,
J.
, and
Jiang
,
Y.
, “
A Study of Fatigue Crack Growth of 7075-T651 Aluminum Alloy
,”
Int. J. Fatigue
, Vol. 
30
, No. 
7
,
2008
, pp. 
1169
1180
, https://doi.org/10.1016/j.ijfatigue.2007.09.006
38.
ASTM E8-99
Standard Test Methods for Tension Testing of Metallic Materials (Superseded)
,
ASTM International
,
West Conshohocken, PA
,
1999
, www.astm.org
39.
ASTM E647-99
Standard Test Method for Measurement of Fatigue Crack Growth Rates (Superseded)
,
ASTM International
,
West Conshohocken, PA
,
2000
, www.astm.org
40.
Chen
,
C.
,
Ye
,
D.
,
Zhang
,
L.
, and
Liu
,
J.
, “
Effects of Tensile/Compressive Overloads on Fatigue Crack Growth Behavior of an Extra-Low-Interstitial Titanium Alloy
,”
Int. J. Mech. Sci.
, Vol. 
118
,
2016
, pp. 
55
66
, https://doi.org/10.1016/j.ijmecsci.2016.09.014
41.
Ding
,
Z.
,
Wang
,
X.
,
Gao
,
Z.
, and
Bao
,
S.
, “
An Experimental Investigation and Prediction of Fatigue Crack Growth Under Overload/Underload in Q345R Steel
,”
Int. J. Fatigue
, Vol. 
98
,
2017
, pp. 
155
166
, https://doi.org/10.1016/j.ijfatigue.2017.01.024
This content is only available via PDF.
You do not currently have access to this content.