Abstract

The creep-induced change of the dynamic stiffness of resilient materials used in vibration isolation systems in floating floors is an important issue, especially with regard to the use of open cell resilient materials, because the change in the dynamic stiffness is a key factor in the performance of vibration isolators, and open cell materials are vulnerable to creep deformation. This study proposes a method for measuring the creep-induced change of the dynamic stiffness that employs quasi-static mechanical analysis under the assumption that the creep-induced change of the mechanical structure of the resilient material is independent of time and stress. The pre-creep dynamic properties of a sample resilient layer measured with a method very similar to the one recommended in ISO 9052–1 are compared with the data measured with the proposed method, and the results illustrate the consistency in the data measured with the two methods. A proposed creep test is performed for a sample resilient layer including open cell material used for a floating floor, and the change in the dynamic stiffness due to creep deformation is assessed by combining the proposed method and the creep test data. The study indicates that the proposed method is able to assess the creep-induced change of the dynamic stiffness and could be useful for the design of vibration isolation systems in long-term use.

References

1.
Schiavi
,
A.
,
Pavoni Belli
,
A.
,
Corallo
,
M.
, and
Russo
,
F.
, “
Acoustical Performance Characterization of Resilient Materials Used under Floating Floors in Dwellings
,”
Acta Acust. Acust.
, Vol.
93
(
3
),
2007
, pp.
477
485
.
2.
Kim
,
K.
,
Jeong
,
G.
,
Yang
,
K.
, and
Sohn
,
J.
, “
Correlation between Dynamic Stiffness of Resilient Materials and Heavyweight Impact Sound Reduction Level
,”
Build. Environ.
, Vol.
44
(
8
),
2009
, pp.
1589
1600
. https://doi.org/10.1016/j.buildenv.2008.10.005
3.
Yoo
,
S. Y.
,
Lee
,
P. J.
,
Lee
,
S. Y.
, and
Jeon
,
J. Y.
, “
Measurement of Sound Field for Floor Impact Sounds Generated by Heavy/Soft Impact Sources
,”
Acta Acust. Acust.
, Vol.
96
(
4
),
2010
, pp.
761
772
. https://doi.org/10.3813/AAA.918330
4.
Stewart
,
M. A.
, and
Craik
,
R. J. M.
, “
Impact Sound Transmission through a Floating Floor on a Concrete Slab
,”
Appl. Acoust.
, Vol.
59
(
4
),
2000
, pp.
353
372
. https://doi.org/10.1016/S0003-682X(99)00030-4
5.
Hui
,
C. K.
, and
Ng
,
C. F.
, “
New Floating Floor Design with Optimum Isolator Location
,”
J. Sound. Vib.
, Vol.
303
(
1–2
),
2007
, pp.
221
238
. https://doi.org/10.1016/j.jsv.2007.01.011
6.
Neves e Sousa
,
A.
, and
Gibbs
,
B. M.
, “
Low Frequency Impact Sound Transmission in Dwellings through Homogeneous Concrete Floors and Floating Floors
,”
Appl. Acoust.
, Vol.
72
(
4
),
2011
, pp.
177
189
. https://doi.org/10.1016/j.apacoust.2010.11.006
7.
Pritz
,
T.
, “
Dynamic Young’s Modulus and Loss Factor of Plastic Foams for Impact Sound Isolation
,”
J. Sound. Vib.
, Vol.
178
(
3
),
1994
, pp.
315
322
. https://doi.org/10.1006/jsvi.1994.1488
8.
Pritz
,
T.
, “
Dynamic Young’s Modulus and Loss Factor of Floor Covering Materials
,”
Appl. Acoust.
, Vol.
49
(
2
),
1996
, pp.
179
190
. https://doi.org/10.1016/0003-682X(96)00021-7
9.
Cho
,
T.
,
Jang
,
J.
, and
Jeong
,
M.
, “
The Effect of Polyester Felt Layer on the Floor Impact Vibration Isolation
,”
36th International Congress and Exhibition on Noise Control Engineering (Inter-Noise 2007)
, Istanbul, Turkey, Aug 28–30,
2007
,
The International Institute of Noise Control Engineering
,
Notre Dame, IN
.
10.
ISO 9052–1
,
1989
, “
Acoustics—Determination of Dynamic Stiffness—Part 1: Materials Used under Floating Floors in Dwellings
,” International Organization for Standardization, Geneva, Switzerland.
11.
Vaitkus
,
S.
,
Gnip
,
I.
,
Keršulis
,
V.
, and
Vėjelis
,
S.
, “
Prediction of Creep Strain of the Expanded Polystyrene (EPS) in Long-term Compression
,”
Mater. Sci. (Poland)
, Vol.
13
(
4
),
2007
, pp.
293
298
.
12.
Gnip
,
Y.
,
Vaitkusa
,
S.
,
Keršulisa
,
V.
, and
Vėjelisa
,
S.
, “
Long-term Prediction of Compressive Creep Development in Expanded Polystyrene
,”
Polym. Test.
, Vol.
27
(
3
),
2008
, pp.
378
391
. https://doi.org/10.1016/j.polymertesting.2008.01.005
13.
Gnip
,
I. J.
,
Kersulis
,
V. I.
, and
Vaitkus
,
S. I.
, “
Analytical Description of the Creep of Expanded Polystyrene under Compressive Loading
,”
Mech. Compos. Mater.
, Vol.
41
(
4
),
2005
, pp.
357
364
. https://doi.org/10.1007/s11029-005-0061-5
14.
Gnip
,
I.
,
Keršulisa
,
V.
,
Vaitkusa
,
S.
, and
Vėjelisa
,
S.
, “
Confidence Intervals of Prediction and Synthesis of Prediction Estimates for Deformability of Expanded Polystyrene in Long-term Compression
,”
Constr. Build. Mater.
, Vol.
21
(
7
),
2007
, pp.
1390
1398
. https://doi.org/10.1016/j.conbuildmat.2006.08.001
15.
Gnip
,
I.
,
Vaitkusa
,
S.
,
Keršulisa
,
V.
, and
Vėjelisa
,
S.
, “
Predicting the Deformability of Mineral Wool Slabs under Constant Compressive Stress
,”
Constr. Build. Mater.
, Vol.
23
(
5
),
2009
, pp.
1928
1934
. https://doi.org/10.1016/j.conbuildmat.2008.09.008
16.
Gnip
,
I. Y.
,
Vaitkusa
,
S.
,
Keršulisa
,
V.
, and
Vėjelisa
,
S.
, “
Experiments for the Long-term Prediction of Creep Strain of Expanded Polystyrene under Compressive Stress
,”
Polym. Test.
, Vol.
29
(
6
),
2010
, pp.
693
700
. https://doi.org/10.1016/j.polymertesting.2010.05.011
17.
Dikavičius
,
V.
, and
Miškinis
,
K.
, “
Change of Dynamic Stiffness of Open and Closed Cell Resilient Materials after Compressibility Test
,”
Mater. Sci. (Poland)
, Vol.
15
(
4
),
2009
, pp.
368
371
.
18.
Dikavičius
,
V.
,
Miškinis
,
K.
, and
Stankevičius
,
V.
, “
Influence of Mechanical Deformation on Compressive Strength of Open and Closed Cells Resilient Materials
,”
Mater. Sci. (Poland)
, Vol.
16
(
3
),
2010
, pp.
268
271
.
19.
Möser
,
M.
,
Engineering Acoustics: An Introduction to Noise Control
, 2nd ed.,
Springer
,
New York
,
2004
, p. 259.
20.
Blauert
,
J.
, and
Xiang
,
N.
,
Acoustics for Engineers: Troy Lectures
,
Springer
,
New York
,
2008
, p. 192.
21.
Beranek
,
L. L.
, and
Vér
,
L. L.
,
Noise and Vibration Control Engineering: Principles and Applications
,
John Wiley & Sons
,
New York
,
1992
, pp. 429, 451.
22.
ISO 20392
,
2007
, “
Thermal-insulating Materials—Determination of Compressive Creep
,” International Organization for Standardization, Geneva, Switzerland.
23.
BS EN 1606
,
1997
, “
Thermal Insulating Products for Building Applications. Determination of Compressive Creep
,” British Standards Institution, London.
24.
Findley
,
W. N.
, and
Khosla
,
G.
, “
An Equation for Tension Creep of Three Unfilled Thermoplastics
,”
SPE J.
, Vol.
12
(
12
),
1956
, pp.
20
25
.
25.
Findley
,
W. N.
, “
Mechanism and Mechanics of Creep of Plastics
,”
SPE J.
, Vol.
16
(
1
),
1960
, pp.
57
65
.
26.
Magnan
,
J.-P.
, and
Serratrice
,
J.-F.
, “
Propriétés mécaniques du polystyrène expansé pour ses applications en remblai routier [Mechanical properties of expanded polystyrene for applications in road embankment]
,”
Bulletin de Liaison des Laboratoires des Ponts et Chaussées
, Vol.
164
,
1989
, pp.
25
31
.
27.
Horvath
,
J. S.
, “
The Compressible Inclusion Function of EPS Geofoam
,”
Geotext. Geomembr.
, Vol.
15
(
1–3
),
1997
, pp.
77
120
. https://doi.org/10.1016/S0266-1144(97)00008-3
28.
Horvath
,
J. S.
, “
Mathematical Modeling of the Stress-Strain-Time Behavior of Geosynthetics Using the Findley Equation: General Theory and Application to EPS-Block Geofoam
,” Manhattan College Research Report No. CE/GE-98-3,
Manhattan College, School of Engineering, Civil Engineering Department
, Bronx, NY,
1998
.
29.
de Silva
,
C. W.
,
Vibration Damping, Control, and Design
,
CRC Press
,
Boca Raton, FL
,
2007
, pp.
1
16
.
30.
Langlois
,
C.
,
Panneton
,
R.
, and
Atalla
,
N.
, “
Polynomial Relations for Quasi-static Mechanical Characterization of Isotropic Poroelastic Materials
,”
J. Acoust. Soc. Am.
, Vol.
110
(
6
),
2001
, pp.
3032
3040
. https://doi.org/10.1121/1.1419091
31.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
Fundamentals of Acoustics
, 4th ed.,
John Wiley & Sons
,
New York
,
1999
, p. 17.
32.
ISO 6721–1
,
2001
, “
Plastics—Determination of Dynamic Mechanical Properties—Part 1
,” International Organization for Standardization, Geneva, Switzerland.
33.
Policarpo
,
H.
,
Neves
,
M. M.
, and
Ribeiro
,
A. M. R.
, “
Dynamical Response of a Multi-laminated Periodic Bar: Analytical, Numerical and Experimental Study
,”
Shock Vib.
, Vol.
17
(
4–5
),
2010
, pp.
521
535
.
This content is only available via PDF.
You do not currently have access to this content.