Abstract

The 26 NiCrMoV 14 5 and 18Mn18Cr steels have wide applications in the manufacturing of rotors and coil retaining rings. Current studies in the literature mainly regard their metallurgical properties, while little information is available about their cyclic and fatigue behavior. There is also little information regarding possible anisotropic behavior along the tangential and radial forming directions of the aforementioned components. The cited items were tackled by running an experimental campaign with specimens machined from real components in the tangential and radial directions. The experimental procedure was very careful from the points of view of methodology, of strain control, and of fracture evaluation. Static, cyclic, and low cycle fatigue curves were determined. The data were processed for the computation of curve parameters. While an original statistical analysis inspired by ASTM E739-10 was conducted to determine hyperbolic confidence bands “wrapped around” the entire fatigue curves, relating total strain amplitudes to lives. To tackle the question of anisotropy, a novel formulation of the analysis of variance was applied to compare the fatigue curves of both materials along the two forming directions.

References

1.
Moore
,
W. G.
, “
Evaluation, Repair & Restoration of Generator Magnetic Retaining Rings
,”
International Joint Power Generation Conference and Exhibition and ICOPE ’99
,
Burlingame, CA
, July 25–18,
ASME
,
New York, NY
,
1999
.
2.
Orita
,
K.
,
Ikeda
,
Y.
,
Iwadate
,
T.
, and
Ishizaka
,
J.
, “
Development and Production of 18Mn-18Cr Non-Magnetic Retaining Ring with High Yield Strength
,”
ISIJ Int.
, Vol.
30
,
1990
, pp.
587
593
. https://doi.org/10.2355/isijinternational.30.587
3.
Vogt
,
J. B.
, “
Fatigue Properties of High Nitrogen Steels
,”
J. Mater. Process. Technol.
, Vol.
117
,
2001
, pp.
364
369
. https://doi.org/10.1016/S0924-0136(01)00799-3
4.
Nixon
,
J.
and Foley, A. G., “
Materials of Generator Endwinding Retaining Rings
,”
GEC Alstom Rev.
, Vol.
9
,
1992
, pp.
19
34
.
5.
Tong
,
W.
, “
Design and Analysis of Retaining Ring Locking Key Groove in Turbine Generators
,”
2004 ASME International Congress and Exposition
,
Anaheim, CA
, Nov 13–19,
ASME
,
New York, NY
,
2004
, pp.
167
171
.
6.
Balitskii
,
A.
,
Krohmalny
,
O.
, and
Ripey
,
I.
, “
Hydrogen Cooling of Turbogenerators and the Problem of Rotor Retaining Ring Materials Degradation
,”
Int. J. Hydrogen Energy
, Vol.
25
,
2000
, pp.
167
171
. https://doi.org/10.1016/S0360-3199(99)00023-3
7.
Yamamoto
,
Y.
,
Namera
,
T.
,
Otaka
,
T.
,
Ito
,
H.
, and
Tari
,
M.
, “
Successful Manufacturing and Shop Testing of the World’s Largest Tandem 2-Pole, 60 Hz, 1,000 MW Turbine Generator
,”
Power Engineering Society Summer Meeting
,
Vancouver, Canada
, July 15–19,
IEEE
,
Washington, DC.
,
2001
, pp.
1393
1398
.
8.
Peagno
,
D. P.
, “
Coil Retaining Rings—Rotek Engineering’s Experience
,” Electrical Engineering Congress 1994, Sydney, Australia, Nov 24–30, Institution of Electrical Engineers, Barton, Australia,
1994
, Part
2
, pp.
251
258
.
9.
Maeng
,
W. Y.
, and
Macdonald
,
D. D.
, “
The Effect of Acetic Acid on the Stress Corrosion Cracking of 3.5NiCrMoV Turbine Steels in High Temperature Water
,”
Corros. Sci.
, Vol.
50
,
2008
, pp.
2239
2250
. https://doi.org/10.1016/j.corsci.2008.04.023
10.
Nix
,
K. J.
, and
Lindley
,
T. C.
, “
The Influence of Relative Slip Range and Contact Material on the Fretting Fatigue Properties of 3.5NiCrMoV Rotor Steel
,”
Wear
, Vol.
125
,
1988
, pp.
147
162
. https://doi.org/10.1016/0043-1648(88)90199-8
11.
Swaminathan
,
V. P.
,
Shih
,
T. T.
, and
Saxena
,
A
, “
Low Frequency Fatigue Crack Growth Behavior of A470 Class 8 Rotor Steel at 538°C (1000°F)
,”
Eng. Fract. Mech.
, Vol.
16
,
1982
, pp.
827
836
. https://doi.org/10.1016/0013-7944(82)90007-8
12.
Bashu
,
S. A.
, “
Impact Energy/Specimen Thickness Relationship for Two Turbine Steels
,”
J. Test Eval.
, Vol.
18
,
1990
, pp.
363
368
. https://doi.org/10.1520/JTE12500J
13.
Skorchelletty
,
V. V.
,
Silina
,
E. P.
,
Zaytsev
,
V. A.
,
Maslov
,
V. V.
, and
Lubeznova
,
T. D.
, “
Stress Corrosion Cracking of Turbogenerators Rotors Retaining Rings
,”
Elektr. Stantsii.
, Vol.
12
,
1981
, pp.
40
42
.
14.
Speidel
,
M. O.
, “
Nichtmagnetisierbare stahle fur generator-kappenringe, ihr widerstand gegen korrosionermundung [Non-magnetic steels for turbogenerator coil retaining rings: resistance to corrosion fatigue.]
,”
VGB Kraftw.
, Vol.
61
,
1981
, pp.
1048
1053
.
15.
Kilpatrick
,
N. L.
, and
Schneider
,
M. I.
, “
Update on Experience with In-Service Examination of Non-Magnetic Rings on Generator Rotors
,”
Third P900-Coloquium, Generator Retaining-Ring Workshop (EPRI-EL-5825)
,
Charlotte, NC
, Sept 15–17,
EPRI
,
Palo Alto, CA
,
1987
, pp.
103
109
.
16.
Morrow
,
J.
, “
Cyclic Plastic Energy and Fatigue of Metals
,”
ASTM Spec. Tech. Publ.
, Vol.
378
,
1964
, pp.
45
87
.
17.
Manson
,
S. S.
, “
Fatigue: A Complex Subject—Some Simple Approximations
,”
Exp. Mech.
, Vol.
5
,
1965
, pp.
193
226
. https://doi.org/10.1007/BF02321056
18.
Coffin
,
L. F.
, Jr.
, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. ASME
, Vol.
76
,
1954
, pp.
931
950
.
19.
Roessle
,
M. L.
and
Fatemi
,
A
, “
Strain-Controlled Fatigue Properties of Steels and Some Simple Approximations
,”
Int. J. Fatigue
, Vol.
22
,
2000
, pp.
495
511
. https://doi.org/10.1016/S0142-1123(00)00026-8
20.
International Organization for Standardization ISO 12106:2003(E)
, “
Metallic materials—Fatigue testing—Axial-strain-controlled method
,” Geneva, Switzerland,
2003
.
21.
ASTM E739-10
,
2010
, “
Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ɛ-N) Fatigue Data
,”
Annual Book of ASTM Standards
, Vol.
03.01
,
ASTM International
,
West Conshohocken, PA
.
22.
ASTM E606-04
,
2004
, “
Standard Practice for Strain-Controlled Fatigue Testing
,”
Annual Book of ASTM Standards
, Vol. 03.01,
ASTM International
,
West Conshohocken, PA
.
23.
Berger
,
P. D.
, and
Maurer
,
R. E.
,
Experimental Design with Applications in Management, Engineering and the Sciences
,
Duxbury Press
,
Belmont, CA
,
2002
.
24.
Murphy
,
J. T.
,
Ballinger
,
R.
,
Becker
,
H.
,
Gwinn
,
D.
, and
Mathew
,
S.
, “
Turbogenerator Flywheel for Alcator C-MOD
,”
14th IEEE/NPSS Symposium on Fusion Engineering
,
San Diego, CA
, Sept 30,
IEEE/NPSS
,
Washington, DC
,
1992
, pp.
551
554
.
25.
Klempner
,
G.
, and
Kerszenbaum
,
I.
,
Operation and Maintenance of Large Turbo Generators
,
IEEE Press
,
New York
,
2004
.
26.
Bokelman
,
D.
,
Forch
,
K.
, and
Haverkamp
,
K. D.
, “
Forging Technique for the Manufacture of a Heavy Flywheel with 108 t Forging Weight
,”
11th International Forgemasters Meeting
, Terni/Spoleto, Hune 11-14,
Società delle Fucine
,
Terni, Italy
,
1991
.
27.
Sun
,
M. C.
,
Sun
,
Y. H.
, and
Wang
,
R. K.
, “
50Mn18Cr4WN Retaining Ring Macroresidual Stress Relieving by Pulsating Oil Pressure
,”
Mater. Lett.
, Vol.
58
,
2004
, pp.
1340
1343
. https://doi.org/10.1016/j.matlet.2003.10.001
28.
Olmi
,
G.
, “
A New Loading-Constraining Device for Mechanical Testing with Misalignment Auto-Compensation
,”
Exp. Tech.
, Vol.
35
, No.
6
,
2011
, pp.
61
70
. https://doi.org/10.1111/j.1747-1567.2010.00678.x
29.
Olmi
,
G.
, “
A Novel Method for Strain Controlled Tests
,”
Exp. Mech.
, Vol.
52
, No.
4
,
2012
, pp.
379
393
. https://doi.org/10.1007/s11340-011-9496-x
30.
Sandhya
,
R.
,
Veeramani
,
A.
, Bhanu Sankara
Rao
,
K.
, and
Mannan
,
S. L.
, “
On Specimen Geometry Effects in Strain-Controlled Low-Cycle Fatigue
,”
Int. J. Fatigue
, Vol.
16
,
1994
, pp.
202
208
. https://doi.org/10.1016/0142-1123(94)90004-3
31.
ISO 6892-1
,
Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature
,
International Organization for Standardization
,
Geneva, Switzerland
,
2009
.
32.
Pang
,
J. H. L.
,
Xiong
,
B. S.
, and
Low
,
T. H.
, “
Low Cycle Fatigue Study of Lead Free 99.3Sn–0.7Cu Solder Alloy
,”
Int. J. Fatigue
, Vol.
26
,
2004
, pp.
865
872
. https://doi.org/10.1016/j.ijfatigue.2003.12.004
33.
Hirose
,
T.
,
Tanigawa
,
H.
,
Ando
,
M.
,
Kohyama
,
A.
,
Katoh
,
Y.
, and
Narui
,
M.
, “
Radiation Effects on Low Cycle Fatigue Properties of Reduced Activation Ferritic/Martensitic Steels
,”
J. Nucl. Mater.
, Vol.
307–311
,
2002
, pp.
304
307
. https://doi.org/10.1016/S0022-3115(02)01199-6
34.
Petersen
,
C.
,
Schmitt
,
R.
, and
Gamier
,
D.
, “
Thermal and Isothermal Low Cycle Fatigue of MANET I and II
,”
J. Nucl. Mater.
, Vol.
233–237
,
1996
, pp.
285
288
. https://doi.org/10.1016/S0022-3115(96)00191-2
35.
Sanders
,
R. E.
, Jr. and
Starke
,
E. A.
Jr., “
The Effect of Grain Refinement on the Low Cycle Fatigue Behavior of an Aluminum-Zinc-Magnesium (Zirconium) Alloy
,”
Mater. Sci. Eng.
, Vol.
28
,
1977
, pp.
53
68
. https://doi.org/10.1016/0025-5416(77)90089-1
36.
Influence of Prior Treatment on High Strain Fatigue Life of Aluminum Alloy RR58
,”
Advances in Research on the Strength and Fracture of Materials, Proceedings of the Fourth International Conference on Fracture
,
Waterloo, Ontario, Canada
, June 19–24, 1977, Eds: David M. R. Taplin,
Pergamon Press
,
New York, NY
, pp.
741
747
,
1978
.
37.
Ramberg
,
W.
, and
Osgood
W. R.
, “
Description of Stress–Strain Curves by Three Parameters
,” NACA Tech. Note No. 902,
1943
.
This content is only available via PDF.
You do not currently have access to this content.