Abstract

This paper presents an experimental study on effect of specimen size on the static strength and dynamic increase factor (DIF) of plain and fiber reinforced high-strength concrete determined from Split Hopkinson pressure bar (SHPB) tests. Four types of specimens were used to determine the static strength of the concrete including (i) cylinders with the same size as that used for SHPB test (diameter (D)=77 mm and length (L)/D ratio=0.5), (ii) cylinders with the same diameter as that of SHPB but with L/D=2, (iii) standard cylinders of D100×200-mm, and (iv) 100-mm cubes. Results indicate that cylinders with the same diameter as those of the SHPB but with L/D=2 are suitable for determining the static strength to be used in DIF computations based on the stress state and failure patterns.

References

1.
T.G. Fédération-internationale-du-béton
, “
Constitutive Modelling of High Strength/High Performance Concrete
,”
Bulletin (Fédération internationale du béton)
,
H.S. Muller
,
Lausanne, Switzerland
,
2008
, p. 125.
2.
CEB Comité Euro-International du Béton
, “
CEB-FIP Model Code 1990
,”
1990
.
3.
Grote
,
D. L.
,
Park
,
S. W.
, and
Zhou
,
M.
, “
Dynamic Behavior of Concrete at High Strain Rates and Pressures: I. Experimental Characterization
,”
Int. J. Impact Eng.
 0734-743X, Vol.
25
,
2001
, pp.
868
886
. https://doi.org/10.1016/S0734-743X(01)00020-3
4.
Schmidt
,
M. J.
and
Cazacu
,
O.
, “
Behavior of Cementitious Materials for High-Strain Rate Conditions
,”
J. Phys. IV
 1155-4339, Vol.
134
,
2006
, pp.
1119
1124
.
5.
Jiao
,
C. J.
,
Sun
,
W.
, and
Gao
,
P. z.
, “
Dynamic Mechanical Properties of Steel-Fiber Reinforced Ultra High Strength Concrete
,”
Engineering Mechanics
, Vol.
23
(
8
),
2006
, pp.
86
90
.
6.
Zhang
Z.-G.
,
Kong
D.-Q.
,
Gong
G.-M.
,
Chong
X.-L.
,
Wu
Y.-G.
,
Li
Q.
, and
Meng
B.
, “
Dynamic Mechanical Behavior of Concrete Under High Strain Rate Using SHPB
,”
Journal of PLA University of Science and Technology
, Vol.
8
(
6
),
2007
, pp.
611
618
.
7.
Li
,
W.
and
Xu
,
J.
, “
Mechanical Properties of Basalt Fiber Reinforced Geopolymeric Concrete under Impact Loading
,”
Materials and Structures
, Vol.
505
(
1–2
),
2009
, pp.
178
186
.
8.
Ross
,
C. A.
,
Thompson
,
P. Y.
, and
Tedesco
,
J. W.
, “
Split-Hopkinson Pressure-Bar Tests on Concrete and Mortar in Tension and Compression
,”
ACI Mater. J.
 0889-325X, Vol.
86
(
5
),
1989
, pp.
475
481
.
9.
Lok
,
T. S.
,
Li
,
X. B.
, and
Zhao
,
P. J.
, “
Testing and Response of Large Diameter Brittle Materials Subjected to High Strain Rate
,”
J. Mater. Civ. Eng.
 0899-1561, Vol.
14
(
3
),
2002
, pp.
262
269
. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(262)
10.
Nemat-Nasser
,
S.
, Ed., “
Introduction to High Strain Rate Testing
,”
Mechanical Testing and Evaluation
, Vol.
8
,
ASM International
,
Materials Park, OH
,
2000
, pp.
427
446
.
11.
Gama
,
B.A.
,
Lopatnikov
,
S. L.
, and
Gillespie
,
J. W.
, Jr.
, “
Hopkinson Bar Experimental Technique: A Critical Review
,”
Appl. Mech. Rev.
 0003-6900, Vol.
57
(
1–6
),
2004
, pp.
223
250
. https://doi.org/10.1115/1.1704626
12.
Davies
,
R. M.
, “
A Critical Study of the Hopkinson Pressure Bar
,”
Philosophical Trans.
, Vol.
240
,
1948
, pp.
375
457
. https://doi.org/10.1098/rsta.1948.0001
13.
Davies
,
E. D. H.
and
Hunter
,
S. C.
, “
The Dynamic Compression Testing of Solids by the Method of the Split Hopkinson Pressure Bar
,”
J. Mech. Phys. Solids
 0022-5096, Vol.
11
(
3
),
1963
, pp.
155
179
. https://doi.org/10.1016/0022-5096(63)90050-4
14.
Cotsovos
,
D. M.
and
Pavlovic
,
M. N.
, “
Numerical Investigation of Concrete Subjected to Compressive Impact Loading. Part 1: A Fundamental Explanation for the Apparent Strength Gain at High Loading Rates
,”
Computers and Structures
, Vol.
86
(
1–2
),
2008
, pp.
145
163
. https://doi.org/10.1016/j.compstruc.2007.05.014
15.
Li
,
Q. M.
and
Meng
,
H.
, “
About the Dynamic Strength Enhancement of Concrete-Like Materials in a Split Hopkinson Pressure Bar Test
,”
Int. J. Solids Struct.
 0020-7683, Vol.
40
(
2
),
2003
, pp.
343
360
. https://doi.org/10.1016/S0020-7683(02)00526-7
16.
Gray
,
G. T. R.
, III
, “
Classic Split-Hopkinson Pressure Bar Testing
,”
Mechanical Testing and Evaluation
, Vol.
8
,
2000
, pp.
462
476
.
17.
Ross
,
C. A.
,
Tedesco
,
J. W.
, and
Kuennen
,
S. T.
, “
Effects of Strain Rate on Concrete Strength
,”
ACI Mater. J.
 0889-325X, Vol.
92
(
1
),
1995
, pp.
37
47
.
18.
Ross
,
C. A.
,
Jerome
,
D. M.
,
Tedesco
,
J. W.
, and
Hughes
,
M. L.
, “
Moisture and Strain Rate Effects on Concrete Strength
,”
ACI Mater. J.
 0889-325X, Vol.
93
,
1996
, pp.
293
300
.
19.
Tedesco
,
J. W.
and
Ross
,
C. A.
, “
Strain-Rate-Dependent Constitutive Equations for Concrete
,”
ASME J. Pressure Vessel Technol.
 0094-9930, Vol.
120
(
4
),
1998
, pp.
398
405
. https://doi.org/10.1115/1.2842350
20.
Fagerlund
,
G.
and
Larsson
,
B.
, “
Impact Strength of Concrete (Betongs Slaghallfasthet)
,”
CBI Forsk (Cement-och Betonginstitutet)
, Vol.
4
,
1979
.
21.
Malvern
,
L. E.
,
Tang
,
T.
,
Jenkins
,
D. A.
, and
Gong
,
J. C.
, “
Dynamic Compressive Strength of Cementitious Materials
,”
1986
,
Materials Research Society
,
Warrendale, PA
.
22.
Bhargava
,
J.
and
Rehnstrom
,
A.
, “
Dynamic Strength of Polymer Modified and Fiber-Reinforced Concretes
,”
Cem. Concr. Res.
 0008-8846, Vol.
7
(
2
),
1977
, pp.
199
207
. https://doi.org/10.1016/0008-8846(77)90032-1
23.
Yan
,
S. H.
,
Li
,
Z. C.
,
Wang
,
M. Y.
, and
Yin
,
F.
, “
Dynamic Compressive Behavior of High-Strength Steel Fiber Reinforced Concrete
,”
Combust., Explos. Shock Waves
 0010-5082, Vol.
22
(
3
),
2002
, pp.
237
241
.
24.
Lok
,
T. S.
and
Zhao
,
P. J.
, “
Impact Response of Steel Fiber-Reinforced Concrete Using a Split Hopkinson Pressure Bar
,”
J. Mater. Civ. Eng.
 0899-1561, Vol.
16
(
1
),
2004
, pp.
54
59
. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(54)
25.
Lok
,
T. S.
,
Zhao
,
P. J.
, and
Lu
,
G.
, “
Using the Split Hopkinson Pressure Bar to Investigate the Dynamic Behaviour of SFRC
,”
Mag. Concrete Res.
 0024-9831, Vol.
55
(
2
),
2003
, pp.
183
191
. https://doi.org/10.1680/macr.2003.55.2.183
26.
Yan
,
S. H.
,
Qian
,
Q. H.
, and
Jiang
,
X. Q.
, “
Comparative Test and Analysis on Static and Dynamic Compressive Characteristics of Short Steel Fiber Reinforced Concrete
,”
China Concr. Cement Prod.
, Vol.
1
,
2001
, pp.
33
35
.
27.
BS EN 206-1:2000,
2000
, “
Specification for Concrete. Part 1: Specification, Performance, Production and Conformity
,” European-Committee-for-Standardization, London.
28.
Neville
,
A. M.
,
Properties of Concrete
, 4th ed.,
J. Wiley
,
Hoboken, NJ
,
1996
.
29.
Şener
,
S.
, “
Size Effect Tests of High Strength Concrete
,”
J. Mater. Civ. Eng.
 0899-1561. Vol.
9
(
1
),
1997
, pp.
46
48
. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:1(46)
30.
ASTM C136-06,
2006
, “
Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates
,” ASTM International, West Conshohocken, PA.
31.
Graff
,
K. F.
,
Wave Motion in Elastic Solids
,
Oxford University Press
,
London
,
1991
.
32.
Patel
,
R.
,
Killoh
,
D.
,
Parrott
,
L.
, and
Gutteridge
,
W.
, “
Influence of Curing at Different Relative Humidities upon Compound Reactions and Porosity in Portland Cement Paste
,”
Mater. Struct.
 1359-5997, Vol.
21
(
3
),
1988
, pp.
192
197
. https://doi.org/10.1007/BF02473055
33.
Wang
,
S.
,
Zhang
,
M.-H.
, and
Quek
,
S. T.
, “
Effect of High Strain Rate Loading on Compressive Behavior of Fiber Reinforced High-Strength Concrete
,”
Mag. Concrete Res.
 0024-9831 (to be published).
34.
Mindess
,
S.
,
Young
,
J. F.
, and
Darwin
,
D.
,
Concrete
, 2nd ed.,
2003
,
Pearson Education Inc.
,
Upper Saddle River, NJ
.
35.
Stahler
,
W.
,
Clingman
,
D.
, and
Kahrizi
,
K.
,
2004
,
Beginning Math and Physics for Game Programmers
,
New Riders
,
Indianapolis, IN
.
36.
Wriggers
,
P.
,
Computational Contact Mechanics
, 2nd ed.,
Springer
,
Berlin, New York
,
2006
. https://doi.org/10.1007/978-3-540-32609-0
This content is only available via PDF.
You do not currently have access to this content.