Abstract

Standard test methods for determining the mechanical properties of Fiber Reinforced Concrete (FRC) are properly defined if they reproduce the actual structural behavior. Among many proposals, a round panel test seems to have all potentials to become an easy-to-use tool and, at the same time, a reliable procedure for the characterization of FRC, in terms of toughness and the post-cracking constitutive cohesive law. A new geometry for the round panel test is herein proposed and discussed in order to make the panel easier to place, handle, and test, therefore avoiding one of the major drawbacks that limit an extensive utilization of the panel test. A comparison between different test typologies for characterizing FRC is reported and discussed in the present paper, with special emphasis on the different scatter that each test produces. Tests are performed on beams as well as on panels. All specimens herein compared have the same concrete mechanical properties and fiber content. The aim of the experimental investigation is to critically discuss the advantages and disadvantages of each testing procedure, focusing on the applicability of the method and on the reliability of results toward a consistent characterization of the structural behavior. Suitable correlations among the different fracture and energy parameters defined in the standards considered are finally reported, and the results are very useful for harmonizing the available standards.

References

1.
di Prisco
M.
,
Felicetti
R.
, and
Plizzari
G. A.
, Eds.,
Proceedings of the Sixth RILEM Symposium on Fibre Reinforced Concretes (FRC), BEFIB 2004
, Varenna, Italy, September 20–22,
2004
,
RILEM PRO 39
,
Bagneaux, France
, p. 1514.
2.
Schumacher
,
P.
,
2006
, “
Rotation Capacity of Self-Compacting Steel Fiber Reinforced Concrete
,” Ph.D. thesis,
Delft University of Technology
, The Netherlands.
3.
Minelli
,
F.
,
Tiberti
,
G.
, and
Plizzari
,
G. A.
, “
Cracking in FRC R/C Elements: A Preliminary Experimental Study
,”
Proceedings of the Third fib International Congress
, Washington, D.C., May 29–June 2,
2010
,
Precast/Prestressed Concrete Institute
,
Washington, DC
(available on CD-ROM).
4.
Vandewalle
,
L.
, “
Test and Design Methods for Steel Fibre Reinforced Concrete Proposed by RILEM TC 162-TDF
,”
Fiber Reinforced Concrete: From Theory to Practice
,
di Prisco
M.
,
Plizzari
G.
,
Ahmad
S.
,
Meyer
C.
, and
Shah
S.
, Eds.;
Proceedings of the International Workshop on Advances in Fibre Reinforced Concretes
, Bergamo, Italy, September 24–25,
2004
,
Starrylink
,
Brescia
, pp. 3–12 and 221.
5.
RILEM TC-162-TDF
, “
Test and Design Methods for Steel Fibre Reinforced Concrete; σ−ε Design Method
,”
Mater. Struct.
 1359-5997, Vol.
36
,
2003
, pp.
560
567
. https://doi.org/10.1617/14007
6.
di Prisco
,
M.
,
Failla
,
C.
,
Plizzari
,
G. A.
, and
Toniolo
,
G.
, “
Italian Guidelines on SFRC
,”
Fiber Reinforced Concrete: From Theory to Practice
,
di Prisco
M.
,
Plizzari
G.
,
Ahmad
S.
,
Meyer
C.
, and
Shah
S.
, Eds.;
Proceedings of the International Workshop on Advances in Fibre Reinforced Concretes
, Bergamo, Italy, September 24–25,
2004
,
Starrylink
,
Brescia
, pp. 39–72 and 221.
7.
CNR DT 204/2006,
2006
, “
Guidelines for the Design, Construction and Production Control of Fibre Reinforced Concrete Structures
,” National Research Council of Italy, Rome, Italy.
8.
Walraven
,
J.
,
Bigaj-van Vliet
,
A. J.
,
Balazs
,
G.
,
Cairns
,
J.
,
Cervenka
,
J.
,
Corres
,
U.
,
Cosenza
,
E.
,
Eligehausen
,
R.
,
Falkner
,
H.
,
Fardis
,
M. N.
,
Foster
,
S.
,
Ganz
,
H. R.
,
Helland
,
S.
,
Høj
,
N. P.
,
Van der Horst
,
A. Q. C.
,
Keuser
,
M.
,
Klein
,
J.-F.
,
Kollegger
,
G.
,
Mancini
,
G.
,
Marti
,
P.
,
Matthews
,
S.
,
Menegotto
,
M.
,
Müller
,
K.
,
Pinto
,
P. E.
,
di Prisco
,
M.
,
Randl
,
N.
,
Rostam
,
S.
,
Sakai
,
K.
,
Schiessl
,
P.
,
Sigrist
,
V.
,
Taerwe
,
L.
,
Ueda
,
T.
,
Wight
,
J. K.
, and
Yamazaki
,
J.
,
fib Bulletin 55: Model Code 2010—First Complete Draft
, Vol.
1
, Chaps. 1–6,
fib
,
Lausanne, Switzerland
,
2010
, p. 318, ISBN 978-2-88394-95-6.
9.
Walraven
,
J.
,
Bigaj-van Vliet
,
A. J.
,
Balazs
,
G.
,
Cairns
,
J.
,
Cervenka
,
J.
,
Corres
,
U.
,
Cosenza
,
E.
,
Eligehausen
,
R.
,
Falkner
,
H.
,
Fardis
,
M. N.
,
Foster
,
S.
,
Ganz
,
H. R.
,
Helland
,
S.
,
Høj
,
N. P.
,
Van der Horst
,
A. Q. C.
,
Keuser
,
M.
,
Klein
,
J.-F.
,
Kollegger
,
G.
,
Mancini
,
G.
,
Marti
,
P.
,
Matthews
,
S.
,
Menegotto
,
M.
,
Müller
,
K.
,
Pinto
,
P. E.
,
di Prisco
,
M.
,
Randl
,
N.
,
Rostam
,
S.
,
Sakai
,
K.
,
Schiessl
,
P.
,
Sigrist
,
V.
,
Taerwe
,
L.
,
Ueda
,
T.
,
Wight
,
J. K.
, and
Yamazaki
,
J.
,
fib Bulletin 56: Model Code 2010—First Complete Draft
, Vol.
2
, Chaps. 7–10,
fib
,
Lausanne, Switzerland
, ,
2010
, p. 312, ISBN 978-2-88394-096-3.
10.
EN 14651-5,
2005
, “
Precast Concrete Products—Test Method for Metallic Fibre Concrete—Measuring the Flexural Tensile Strength
, Europ. Standard, Brussels, Belgium, p. 20.
11.
ASTM C1609/C1609M-07,
2010
, “
Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading)
,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
12.
UNI 11039,
2003
, “
Steel Fiber Reinforced Concrete—Part I: Definitions, Classification Specification and Conformity—Part II: Test Method for Measuring First Crack Strength and Ductility Indexes
,” Italian Board for Standardization, Rome, Italy.
13.
Banthia
,
N.
and
Trottier
,
J.-F.
, “
Test Methods for Flexural Toughness Characterization of Fiber Reinforced Concrete: Some Concerns and a Proposition
,”
ACI Mater. J.
 0889-325X, Vol.
92
, No.
1
,
1995
, pp.
48
57
.
14.
Banthia
,
N.
and
Mindess
,
S.
, “
Toughness Characterization of Fiber-Reinforced Concrete: Which Standard to Use?
,”
J. Test. Eval.
 0090-3973, Vol.
32
, No.
2
,
2004
, pp.
138
142
.
15.
Lambrechts
,
A. N.
, “
The Variation of Steel Fibre Concrete Characteristics. Study on Toughness Results 2002–2003
,”
Fiber Reinforced Concrete: From Theory to Practice
,
di Prisco
M.
,
Plizzari
G.
,
Ahmad
S.
,
Meyer
C.
, and
Shah
S.
, Eds.;
Proceedings of the International Workshop on Advances in Fibre Reinforced Concretes
, Bergamo, Italy, September 24–25,
2004
,
Starrylink
,
Brescia
, pp. 135–148 and 221.
16.
Minelli
,
F.
and
Plizzari
,
G. A.
, “
Round Panel vs. Beam Tests Toward a Comprehensive and Harmonic Characterization of FRC Materials
,”
Proceedings of the BMC-9 Conference
, Warsaw, Poland, October 25–28,
2009
,
Brandt
A. M.
,
Olek
J.
, and
Marshall
I. H.
, Eds., ,
Woodhead Publishing Limited
,
Abington Hall, Abington, Cambridge, England
, pp.
23
32
.
17.
Sorelli
,
L.
,
Meda
,
A.
, and
Plizzari
,
G. A.
, “
Bending and Uniaxial Tensile Tests on Concrete Reinforced with Hybrid Steel Fibers
,”
J. Mater. Civ. Eng., ASCE
, Vol.
17
, No.
5
,
2005
, pp.
519
527
. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(519)
18.
EN 14488-5,
2006
, “
Testing Sprayed Concrete—Part 5: Determination of Energy Absorption Capacity of Fibre Reinforced Slab Specimens
,” Europ. Standard, Brussels, Belgium, p. 12.
19.
ASTM C1550-10,
2010
, “
Standard Test Method for Flexural Toughness of Fiber Reinforced Concrete (Using Centrally Loaded Round Panel)
,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, pp.
20.
Ferrara
,
L.
and
di Prisco
,
M.
Three- vs. Four-Point Bending Test for the Characterization of Plain Concrete: A Numerical Investigation
,”
Stud. Res. Grad. Sch. Concr. Struct., Politecnico di Milano, Italy
, Vol.
22
,
2001
, pp.
73
119
.0002-7820
21.
Marinoni
,
Y.
,
Minelli
,
F.
,
Plizzari
,
G. A.
, and
Vezzoli
,
N.
, “
Prove di frattura su calcestruzzi fibrorinforzati in accordo con le principali normative internazionali [Fracture Tests on FRC Materials in Accordance with the Main International Standards]
,” Technical Report No. 11, University of Brescia, Department DICATA, Brescia, Italy,
2007
(in Italian).
This content is only available via PDF.
You do not currently have access to this content.