Abstract

The efficiency of track foundation material gradually decreases due to insufficient lateral confinement, ballast fouling, and loss of shear strength of the subsurface soil under cyclic loading. This paper presents characterization of rail track subsurface to identify ballast fouling and subsurface layers shear wave velocity using seismic survey. Seismic surface wave method of multi-channel analysis of surface wave (MASW) has been carried out in the model track and field track for finding out shear wave velocity of the clean and fouled ballast and track subsurface. The shear wave velocity (SWV) of fouled ballast increases with increase in fouling percentage, and reaches a maximum value and then decreases. This character is similar to typical compaction curve of soil, which is used to define optimum and critical fouling percentage (OFP and CFP). Critical fouling percentage of 15 % is noticed for Coal fouled ballast and 25 % is noticed for clayey sand fouled ballast. Coal fouled ballast reaches the OFP and CFP before clayey sand fouled ballast. Fouling of ballast reduces voids in ballast and there by decreases the drainage. Combined plot of permeability and SWV with percentage of fouling shows that after critical fouling point drainage condition of fouled ballast goes below acceptable limit. Shear wave velocities are measured in the selected location in the Wollongong field track by carrying out similar seismic survey. In-situ samples were collected and degrees of fouling were measured. Field SWV values are more than that of the model track SWV values for the same degree of fouling, which might be due to sleeper’s confinement. This article also highlights the ballast gradation widely followed in different countries and presents the comparison of Indian ballast gradation with international gradation standards. Indian ballast contains a coarser particle size when compared to other countries. The upper limit of Indian gradation curve matches with lower limit of ballast gradation curves of America and Australia. The ballast gradation followed by Indian railways is poorly graded and more favorable for the drainage conditions. Indian ballast engineering needs extensive research to improve presents track conditions.

References

1.
Anbazhagan
,
P.
,
Indraratna
,
B.
,
Rujikiatkamjorn
,
C.
, and
Su
,
L.
, “
Using a Seismic Survey to Measure the Shear Modulus of Clean and Fouled Ballast
,”
Geomechanics and Geoengineering: An International Journal
, Vol.
5
, No.
2
,
2010
, pp.
117
126
. https://doi.org/10.1080/17486020903497431
2.
Raymond
,
G. P.
,
Gaskin
,
P. N.
, and
Svec
,
O.
, “
Selection and Performance of Railroad Ballast
,”
Proc. of a Symposium Princeton University
,
Kerr
A. D.
, Ed., Railroad Track Mechanics and Technology,
1975
, pp.
369
385
.
3.
Shenton
,
M. J.
, “
Deformation of Railway Ballast Under Repeated Loading Condition
,”
Proc. of a Symposium Princeton University
,
Kerr
A. D.
, Ed., Railroad Track Mechanics and Technology,
1975
, pp.
387
404
.
4.
Indraratna
,
B.
,
Ionescu
,
D.
, and
Christie
,
H. D.
, “
Shear Behaviour of Railway Ballast Based on Large-Scale Triaxial Tests
,”
J. Geotech. Geoenviron. Eng.
 1090-0241, Vol.
124
, No.
5
,
1998
, pp.
439
449
. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(439)
5.
Selig
,
E. T.
, and
Waters
,
J. M.
,
Track Geotechnology and Substructure management, London
,
American Society of Civil Engineers, Publications Sales Dept.
,
Thomas Telford, New York
,
1994
.
6.
Gallagher
,
G. P.
,
Leipera
,
Q.
,
Williamsona
,
R.
,
Clarkb
,
M. R.
, and
Fordeb
,
M. C.
, “
The Application of Time Domain Ground Penetrating Radar to Evaluate Railway Track Ballast
,”
NDT Int.
 0308-9126, Vol.
32
,
1999
, pp.
463
468
. https://doi.org/10.1016/S0963-8695(99)00025-0
7.
Nazarian
,
S.
,
Stokoe
,
K. H.
 II
, and
Hudson
,
W. R.
, “
Use of Spectral Analysis of Surface Waves Method for Determination of Moduli and Thicknesses of Pavement Systems
,”
Transp. Res. Rec.
 0361-1981, Vol.
930
,
1983
, pp.
38
45
.
8.
Al-Hunaidi
,
M. O.
, “
Difficulties with phase spectrum unwrapping in spectral analysis of surface waves non-destructive testing of pavements
,”
Can. Geotech. J.
 0008-3674, Vol.
29
,
1992
, pp.
506
511
. https://doi.org/10.1139/t92-055
9.
Stokoe
,
K. H.
 II
,
Wright
,
G. W.
,
James
,
A. B.
, and
Jose
,
M. R.
,
1994
, “
Characterization of Geotechnical Sites by SASW Method
,”
Geophysical Characterization of Sites: ISSMFE Technical Committee #10
,
Woods
R. D.
, Ed.,
Oxford Publishers
,
New Delhi
.
10.
Tokimatsu
,
K.
, “
Geotechnical Site Characterization Using Surface Waves
,”
Proc. 1st Int. Conf. on Earth. Geotechn. Eng.
, IS-Tokyo, p-36,
1995
.
11.
Ganji
,
V.
,
Gukunski
,
N.
, and
Maher
,
A.
, “
Detection of Underground Obstacles by SASW Method—Numerical Aspects
,”
J. Geotech. Geoenviron. Eng.
 1090-0241, Vol.
123
, No.
3
,
1997
, pp.
212
219
. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(212)
12.
Park
,
C. B.
,
Miller
,
R. D.
, and
Xia
,
J.
, “
Multi-Channel Analysis of Surface Waves
,”
Geophysics
 0016-8033, Vol.
64
, No.
3
,
1999
, pp.
800
808
. https://doi.org/10.1190/1.1444590
13.
Xia
,
J.
,
Miller
,
R. D.
, and
Park
,
C. B.
, “
Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Wave
,”
Geophysics
 0016-8033, Vol.
64
, No.
3
,
1999
, pp.
691
700
. https://doi.org/10.1190/1.1444578
14.
Xu
,
Y.
,
Xia
,
J.
, and
Miller
,
R. D.
, “
Quantitative Estimation of Minimum Offset for Multichannel Surface-Wave Survey with Actively Exciting Source
,”
J. Appl. Geophys.
 0926-9851, Vol.
59
, No.
2
,
2006
, pp.
117
125
. https://doi.org/10.1016/j.jappgeo.2005.08.002
15.
Zhang
,
S. X.
,
Chan
,
L. S.
, and
Xia
,
J.
, “
The Selection of Field Acquisition Parameters for Dispersion Images from Multichannel Surface Wave Data
,”
Pure Appl. Geophys.
 0033-4553, Vol.
161
,
2004
, pp.
185
201
. https://doi.org/10.1007/s00024-003-2428-7
16.
Anbazhagan
,
P.
, and
Sitharam
,
T. G.
, “
Mapping of Average Shear Wave Velocity for Bangalore Region: A Case Study
,”
J. Environ. Eng. Geophys.
 1083-1363, Vol.
13
, No.
2
,
2008
, pp.
69
84
. https://doi.org/10.2113/JEEG13.2.69
17.
Anbazhagan
,
P.
and
Sitharam
,
T. G.
, “
Seismic Microzonation of Bangalore
,”
J. Earth Syst. Sci.
, Vol.
117
, No.
S2
,
2008
, pp.
833
852
. https://doi.org/10.1007/s12040-008-0071-5
18.
Anbazhagan
,
P.
,
Thingbaijam
,
K. K. S.
,
Nath
,
S. K.
,
Narendara Kumar
,
J. N.
, and
Sitharam
,
T. G.
, “
Multi-Criteria Seismic Hazard Evaluation for Bangalore City
,”
India J. Asian Earth Sci.
, Vol.
38
,
2010
, pp.
186
198
19.
Anbazhagan
,
P.
, and
Sitharam
,
T. G.
, “
Site Characterization and Site Response Studies Using Shear Wave Velocity
,”
J. Seismol. Earthquake Eng.
, Vol.
10
, No.
2
,
2008
, pp.
53
67
.
20.
Anbazhagan
,
P.
,
Sitharam
,
T. G.
, and
Vipin
,
K. S.
, “
Site Classification and Estimation of Surface Level Seismic Hazard Using Geophysical Data and Probabilistic Approach
,”
J. Appl. Geophys.
 0926-9851, Vol.
68
, No.
2
,
2009
, pp.
219
230
. https://doi.org/10.1016/j.jappgeo.2008.11.001
21.
Sitharam
,
T. G.
and
Anbazhagan
,
P.
,
2008
, “
Seismic Microzonation: Principles, Practices and Experiments
,” EJGE Special Volume Bouquet 08, http://www.ejge.com/Bouquet08/Preface.htm, P-61 (Last accessed March 25, 2009).
22.
Anbazhagan
,
P.
and
Sitharam
,
T. G.
2008
, “
Application of Multichannel Analysis of Surface Wave survey in Geotechnical Engineering Problems
,”
Proceeding of 6th Asian Young Geotechnical Engineers Conference
, pp.
291
300
.
23.
Anbazhagan
,
P.
and
Sitharam
,
T. G.
, “
Relationship between Low Strain Shear Modulus and Standard Penetration Test 'N' Values
,”
Geotech. Test. J.
 0149-6115, Vol.
33
, No.
2
,
2010
, pp.
150
164
.
24.
Anbazhagan
,
P.
and
Sitharam
,
T. G.
, “
Spatial Variability of the Weathered and Engineering Bed rock using Multichannel Analysis of Surface Wave Survey
,”
Pure Appl. Geophys.
 0033-4553, Vol.
166
,
2009
, pp.
409
428
. https://doi.org/10.1007/s00024-009-0450-0
25.
Bei
,
S.
2005
, “
Effects of Railroad Track Structural Components and Subgrade on Damping and Dissipation of Train Induced Vibration
,” Doctoral thesis, The Graduate School,
University of Kentucky
, Lexington, KY, China.
26.
Kaminski
,
M. E.
and
Thummaluru
,
M. S. R.
, “
A New Free-Free Resonant Column Device for Measurement of Gmax and Dmin at Higher Confining Stresses
,”
Geotech. Test. J.
 0149-6115, Vol.
28
, No.
2
,
2005
, pp.
180
187
.
27.
Ahlf
,
R. E.
, “
M/W costs: how they are affected by car weight and the track structure
,”
Railway Track Struct
, Vol.
71
, No.
3
,
1975
, pp.
34
37
.
28.
Narayanan
,
R. M.
,
Jakuba
,
J. W.
,
Lib
,
D.
, and
Eliasa
,
S. E. G.
, “
Railroad Track Modulus Estimation Using Ground Penetrating Radar Measurements
,”
NDT Int.
 0308-9126, Vol.
37
,
2004
, pp.
141
151
. https://doi.org/10.1016/j.ndteint.2003.05.003
29.
Suiker
,
A. S. J.
,
Selig
,
E. T.
, and
Frenkel
,
R.
, “
Static and Cyclic Triaxial Testing of Ballast and Subballast
,”
J. Geotech. Geoenviron. Eng.
 1090-0241, Vol.
131
, No.
6
,
2005
, pp.
771
782
. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(771)
30.
Budiono
,
D. S.
,
McSweeney
,
T.
,
Dhanasekar
,
M.
, and
Gurung
,
N.
,
2004
, “
The Effect of Coal Dust Fouling on the Cyclic Behaviour of Rail Track Ballast
,”
Cyclic Behavior of Soil and Liquefaction Phenomena
,
Triantafyllidis
, Ed.,
Taylor & Francis Group
,
London
, pp.
627
632
.
31.
Indraratna
,
B.
,
Su
,
L.
, and
Rujikiatkamjorn
,
C.
, “
A New Parameter for Classification and Evaluation of Railway Ballast Fouling
,” Technical note, Canadian Geotechnical Journal, (in press), IRS-GE Vol.
1
,
2010
, pp. 2004 (Specification for Track Ballast, published by Research Designs and Standards Organisation ) (RDSO) (Ministry of Railways.).
32.
Indraratna
,
B.
and
Salim
,
W.
,
Mechanics of Ballasted Rail Tracks a Geotechnical Perspective
,
Taylor & Francis
,
Great-Britain
,
2005
.
33.
Kolbuszewski
,
J.
and
Frederick
,
M. R.
, “
The Significance of Particle Shape and Size on the Mechanical Behavior of Granular Materials
,”
Proc. European Conference on the Soil Mechanics and Foundation Engineering
,
1963
, pp.
253
263
.
34.
Marachi
,
N. D.
,
Chan
,
C. K.
, and
Seed
,
H. D.
, “
Evaluation of Properties of Rock Fill Materials
,”
J. Soil Mech. Found. Div.
, Vol.
98
,
1972
, pp.
95
114
.
35.
Holz
,
W. G.
and
Gibbs
,
H. J.
, “
Triaxial Shear Tests on Pervious Gravelly Soils
,
J. Soil Mech. and Found. Div.
 0044-7994,” Vol.
82
,
1956
, pp. 867.1–867.22.
36.
Leps
,
T. M.
, “
Review of Shearing Strength of Rock Fill
,”
J. Soil Mech. and Found. Div.
 0044-7994, Vol.
96
,
1970
, pp.
1159
1170
.
37.
Vallerga
,
B. A.
,
Seed
,
H. B.
,
Monismith
,
C. L.
, and
Copper
,
R. S.
,
Effect of Shape, Size and Surface Roughness of Aggregate Particles on the Strength of Granular Materials, ASTM STP
, Vol.
212
,
1957
, pp.
63
76
.
38.
IRS-GE-1
,
2004
,
Specification for Track Ballast
,
Research Designs and Standards Organisation (RDSO)
, Ministry of Railways.
39.
AREMA
2003
, Manual for Railway Engineering. American Railway Engineering and Maintenance-of-way, Association, Vol.1 (track-Roadway and Ballast, USA AS 2758.7, 1996, Aggregates and rock for engineering purposes, part 7: Railway ballast standards Australia, NSW, Australia.
40.
Profillidis
,
V. A.
,
Railway Engineering
,
Avebury Technical, Ash Gate Publishing Ltd
,
U.K.
,
1995
.
41.
AS 2758.7
,
1996
, “
Aggregates and Rock for Engineering Purposes
,”
Railway Ballast Standards Australia
, Part 7,
NSW
, Australia.
This content is only available via PDF.
You do not currently have access to this content.