Abstract

Current hot mix asphalt (HMA) mix design procedures used to determine the optimum asphalt content (OAC) for permeable or porous friction course (PFC) mixtures are based on volumetric properties, primarily total air void (AV) content. This calculated volumetric parameter depends on the bulk specific gravity (Gmb) and the theoretical maximum specific gravity (Gmm) of the mixture, which are generally difficult to measure in a laboratory due to the high asphalt contents, high total AV contents, and the use of modified asphalts for PFC mixtures. This study evaluated two methodologies for determining Gmb (vacuum and dimensional analysis) and two methodologies for determining Gmm (measured and calculated) for use in calculations of total AV content. For the mixtures assessed in this study, originally designed with a total AV content of 20 %, the alternative methodologies studied led to total AV content values outside the design range (18 to 22 %), which implies the necessity of gradation modifications or changes in the fiber content to meet AV requirements and define an OAC. Dimensional analysis and a calculation procedure, based on values of Gmm measured in the laboratory at low asphalt contents, are recommended for determining Gmb and Gmm values, respectively. In addition, dimensional analysis is preliminarily recommended to compute the water-accessible AV content of PFC mixtures based on the assessment of two methods (vacuum and a methodology proposed for dimensional analysis) to compute this parameter. Water-accessible AV content is considered as an alternative parameter for mix design and evaluation.

References

1.
Alvarez
,
A. E.
,
Epps
,
Martin A.
,
Estakhri
,
C.
,
Button
,
J. W.
,
Glover
,
C.
, and
Jung
,
S. H.
, “
Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Courses
,” Report No FHWA/TX-06/0-5262-1,
Texas Transportation Institute-Texas A&M University
, College Station, TX,
2006
.
2.
Brown
,
J. R.
, “
Pervious Bitumen-Macadam Surfacings Laid to Reduce Splash and Spray at Stonebridge, Warwickshire
,” Report No. LR 563, Transportation Road Research Laboratory, UK,
1973
.
3.
Ruiz
,
A. R.
,
Alberola
,
R.
,
Perez
,
F.
, and
Sanchez
,
B.
, “
Porous Asphalt Mixtures in Spain
,”
Transp. Res. Rec.
 0361-1981, Vol.
1265
,
1990
, pp.
87
94
.
4.
Khalid
,
H.
, and
Pérez
,
F.
, “
Performance and Durability of Bituminous Materials
,”
Performance Assessment of Spanish and British Porous Asphalts
,
E & FN Spon
,
London
,
1996
, p. 137.
5.
Button
,
J. W.
,
Fernando
,
E. G.
, and
Middleton
,
D. R.
, “
Synthesis of Pavement Issues Related to High-Speed Corridors
,” Report No. 0-4756-1,
Texas Transportation Institute-Texas A&M University
, College Station, TX,
2004
.
6.
Kearfott
,
P.
,
Barrett
,
M.
, and
Malina
, ,
J. F.
 Jr.
, “
Stormwater Quality Documentation of Roadside Shoulders Borrow Ditches
,” CRWR Online Report 05-02, Center for Research in Water Resources,
The University of Texas at Austin
, Austin, TX, 2005. http://www.crwr.utexas.edu/online.shtml. Accessed December, 19,
2007
.
7.
Kandhal
,
P.
, “
Design, Construction, and Maintenance of Open-Graded Asphalt Friction Courses
,” Information series 115, National Asphalt Pavement Association, Lanham, MD,
2002
.
8.
Watson
,
D. E.
,
Moore
,
K. A.
,
Williams
,
K.
, and
Cooley
,
L. A.
 Jr.
, “
Refinement of New-Generation Open-Graded Friction Course Mix Design
,”
Transp. Res. Rec.
 0361-1981, Vol.
1832
,
2003
, pp.
78
85
.
9.
Watson
,
D. E.
,
Cooley
,
L. A.
 Jr.
,
Moore
,
K. A.
, and
Williams
,
K.
, “
Laboratory Performance Testing of Open-Graded Friction Course Mixtures
,”
Transp. Res. Rec.
 0361-1981, Vol.
1891
,
2004
, pp.
40
47
.
10.
Crouch
,
L. K.
,
Badoe
,
D.
,
Cates
,
M.
,
Borden
,
T. A.
,
Copeland
,
A.
,
Walker
,
C. T.
,
Dunn
,
T.
,
Maxwell
,
R.
, and
Goodwin
,
W.
, “
Bulk Specific Gravity of Compacted Bituminous Mixtures: Finding a More Widely Applicable Method
,” Publication TNSPR RES 1153,
Tennessee Technological University
,
2003
.
11.
Texas Department of Transportation
,
200-F, Bituminous Test Procedures Manual
,
Austin, TX
,
2005
.
12.
Texas Department of Transportation
, “
Standard Specifications for Construction and Maintenance of Highways, Streets, and Bridges
,” Austin, TX,
2004
.
13.
Texas Department of Transportation
, “
Test Procedures (500-C Series)
,” 530-C, Effect of Water on Bituminous Paving Mixtures, Austin, TX,
1999
.
14.
ASTM Standard D7064-04, “
Standard Practice for Open-GradedFriction Course (OGFC) Mix Design
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshochocken, PA
,
2006
, p. 940.
15.
InstroTek®
, “
CoreLok® Operator’s Guide. Version, 20
,”
Incorporated
. Raleigh, NC.,
2003
, p. 20.
16.
AASHTO Standard T 209-05
, “
Theoretical Maximum Specific Gravity and Density of Hot-Mix Asphalt Paving Mixtures
,”
Standard Specifications for Transportation Materials and Methods of Sampling and Testing
, 25th ed.,
AASHTO
,
Washington DC
, pp. T 209-1–T 209-13.
17.
Burr
,
B. L.
,
Glover
,
C. J.
,
Davison
,
R. R.
, and
Bullin
,
J. A.
, “
New Apparatus and Procedure for the Extraction and Recovery of Asphalt Binder from Pavement Mixtures
,”
Transp. Res. Rec.
 0361-1981, Vol.
1391
,
1993
, pp.
20
29
.
18.
Alvarez
,
A. E.
,
Epps
,
Martin A.
, and
Estakhri
,
C.
, “
Connected Air Voids Content in Permeable Friction Course Mixtures
,” [Submitted for publication in the
J. Test. Eval.
 0090-3973, August
2008
].
19.
Masad
,
E.
,
Arambula
,
E.
,
Ketcham
,
R. A.
,
Abbas
,
A. R.
, and
Epps
,
Martin A.
, “
Nondestructive Measurement of Moisture Transport in Asphalt Mixtures
,”
Electron. J. Assoc. Asph. Paving Technol.
 1553-5576, Vol.
76
,
2007
, pp.
919
952
.
20.
Alvarez
,
A. E.
,
Epps
,
Martin A.
,
Estakhri
,
C.
,
Button
,
J. W.
,
Kraus
,
Z.
,
Prapaitrakul
,
N.
, and
Glover
,
C.
, “
Evaluation and Recommended Improvements for Mix Design ofPermeable Friction Courses
,” Report No FHWA/TX-08/0-5262-3,
Texas Transportation Institute-Texas A&M University
, College Station, TX,
2008
.
This content is only available via PDF.
You do not currently have access to this content.