Abstract

Supercritical carbon dioxide (SCO2) Brayton cycle has been proved to be an efficient power cycle to replace the traditional steam Rankine cycle. The thermal efficiency of SCO2 cycle can be further improved by coupling another type of cycle (the bottom cycle) at the waste heat end. A supercritical carbon dioxide recompression Brayton cycle (SCRBC) coupled organic Rankine cycle (ORC) based on solar tower is designed and established. According to the requirements of the waste heat temperature range of the top cycle, R600 is selected as the working medium of ORC. Under the design conditions, the effects of split ratio on the net power, the thermal efficiency, and the exergy loss of the combined cycle are studied. The variation of thermal efficiency of each part of the system with split ratio under different turbine inlet pressures and temperatures is further analyzed, and the influence of turbine inlet pressure and working fluid mass flow ratio ε (mass flow ratio of CO2 to R600) on the system performance is analyzed. Genetic algorithm-based multiobjective optimization is used to obtain the Pareto solution set for the thermal performance and unit investment cost of the system. The results show that the thermal efficiency of the combined cycle can be increased by more than 2% compared with that of a single top cycle. There is an optimal split ratio to maximize the thermal efficiency of the combined cycle, and the positions of the optimal split ratio are different for different turbine inlet pressures. Finally, through the multiobjective optimization method, several groups of Pareto solutions can be found, which can provide some reference for engineering design.

References

1.
Alshahrani
,
S.
, and
Engeda
,
A.
,
2021
, “
Performance Analysis of a Solar–Biogas Hybrid Micro Gas Turbine for Power Generation
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021007
.
2.
Xin
,
T.
,
Xu
,
C.
, and
Yang
,
Y.
,
2020
, “
Thermodynamic Analysis of a Novel Supercritical Carbon Dioxide Brayton Cycle Based on the Thermal Cycle Splitting Analytical Method
,”
Energy Convers. Manage.
,
225
, p.
113458
.
3.
Ma
,
Z.
, and
Martinek
,
J.
,
2021
, “
Analysis of a Fluidized-Bed Particle/Supercritical-CO2 Heat Exchanger in a Concentrating Solar Power System
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
031010
.
4.
Irwin
,
L.
, and
Le Moullec
,
Y.
,
2017
, “
Turbines Can Use CO2 to Cut CO2
,”
Science
,
356
(
6340
), pp.
805
806
.
5.
Reyes-Belmonte
,
M. A.
,
Sebastián
,
A.
,
Romero
,
M.
, and
González-Aguilar
,
J.
,
2016
, “
Optimization of a Recompression Supercritical Carbon Dioxide Cycle for an Innovative Central Receiver Solar Power Plant
,”
Energy
,
112
, pp.
17
27
.
6.
Yao
,
L.
, and
Zou
,
Z.
,
2020
, “
A One-Dimensional Design Methodology for Supercritical Carbon Dioxide Brayton Cycles: Integration of Cycle Conceptual Design and Components Preliminary Design
,”
Appl. Energy
,
276
, p.
115354
.
7.
Yang
,
H.
,
Li
,
J.
,
Wang
,
Q.
,
Wu
,
L.
,
Rodríguez-Sanchez
,
M. R.
,
Santana
,
D.
, and
Pei
,
G.
,
2020
, “
Performance Investigation of Solar Tower System Using Cascade Supercritical Carbon Dioxide Brayton-Steam Rankine Cycle
,”
Energy Convers. Manage.
,
225
, p.
113430
.
8.
Wu
,
C.
,
Xu
,
X.
,
Li
,
Q.
,
Li
,
J.
,
Wang
,
S.
, and
Liu
,
C.
,
2020
, “
Proposal and Assessment of a Combined Cooling and Power System Based on the Regenerative Supercritical Carbon Dioxide Brayton Cycle Integrated With an Absorption Refrigeration Cycle for Engine Waste Heat Recovery
,”
Energy Convers. Manage.
,
207
, p.
112527
.
9.
Saeed
,
M.
,
Berrouk
,
A. S.
,
Salman Siddiqui
,
M.
, and
Awais
,
A. A.
,
2020
, “
Effect of Printed Circuit Heat Exchanger’s Different Designs on the Performance of Supercritical Carbon Dioxide Brayton Cycle
,”
Appl. Therm. Eng.
,
179
, p.
115758
.
10.
Ruiz-Casanova
,
E.
,
Rubio-Maya
,
C.
,
Jesús Pacheco-Ibarra
,
J.
,
Ambriz-Díaz
,
V. M.
,
Romero
,
C. E.
, and
Wang
,
X.
,
2020
, “
Thermodynamic Analysis and Optimization of Supercritical Carbon Dioxide Brayton Cycles for Use With Low-Grade Geothermal Heat Sources
,”
Energy Convers. Manage.
,
216
, p.
112978
.
11.
Cao
,
C.
, and
Li
,
W.
,
2017
, “
Effect of Pinch Point on Thermal and Exergetic Performance of Supercritical Carbon Dioxide Brayton Recompression Cycle
,”
Chem. Ind. Eng. Prog.
,
36
(
11
), pp.
3986
3992
.
12.
Wang
,
K.
, and
He
,
Y. L.
,
2017
, “
Thermodynamic Analysis and Optimization of a Molten Salt Solar Power Tower Integrated With a Recompression Supercritical CO2 Brayton Cycle Based on Integrated Modeling
,”
Energy Convers. Manage.
,
135
, pp.
336
350
.
13.
Cheng
,
K.
,
Qin
,
J.
,
Sun
,
H.
,
Li
,
H.
,
He
,
S.
,
Zhang
,
S.
, and
Bao
,
W.
,
2019
, “
Power Optimization and Comparison Between Simple Recuperated and Recompressing Supercritical Carbon Dioxide Closed-Brayton-Cycle With Finite Cold Source on Hypersonic Vehicles
,”
Energy
,
181
, pp.
1189
1201
.
14.
Anastasovski
,
A.
,
Rasković
,
P.
, and
Guzović
,
Z.
,
2020
, “
A Review of Heat Integration Approaches for Organic Rankine Cycle With Waste Heat in Production Processes
,”
Energy Convers. Manage.
,
221
, p.
113175
.
15.
Feng
,
Y.
,
Du
,
Z.
,
Shreka
,
M.
,
Zhu
,
Y.
,
Zhou
,
S.
, and
Zhang
,
W.
,
2020
, “
Thermodynamic Analysis and Performance Optimization of the Supercritical Carbon Dioxide Brayton Cycle Combined With the Kalina Cycle for Waste Heat Recovery From a Marine Low-Speed Diesel Engine
,”
Energy Convers. Manage.
,
206
, p.
112483
.
16.
Liao
,
G.
,
Jiaqiang
,
E.
,
Zhang
,
F.
,
Chen
,
J.
, and
Leng
,
E.
,
2020
, “
Advanced Exergy Analysis for Organic Rankine Cycle-Based Layout to Recover Waste Heat of Flue Gas
,”
Appl. Energy
,
266
, p.
114891
.
17.
Wu
,
C.
,
Wang
,
S.
, and
Li
,
J.
,
2018
, “
Exergoeconomic Analysis and Optimization of a Combined Supercritical Carbon Dioxide Recompression Brayton/Organic Flash Cycle for Nuclear Power Plants
,”
Energy Convers. Manage.
,
171
, pp.
936
952
.
18.
Wu
,
P.
,
Ma
,
Y.
,
Gao
,
C.
,
Liu
,
W.
,
Shan
,
J.
,
Huang
,
Y.
,
Wang
,
J.
,
Zhang
,
D.
, and
Ran
,
X.
,
2020
, “
A Review of Research and Development of Supercritical Carbon Dioxide Brayton Cycle Technology in Nuclear Engineering Applications
,”
Nucl. Eng. Des.
,
368
, p.
110767
.
19.
Liu
,
Z.
,
Liu
,
Z.
,
Cao
,
X.
,
Luo
,
T.
, and
Yang
,
X.
,
2020
, “
Advanced Exergoeconomic Evaluation on Supercritical Carbon Dioxide Recompression Brayton Cycle
,”
J. Cleaner Prod.
,
256
, p.
120537
.
20.
Sharan
,
P.
,
Neises
,
T.
,
McTigue
,
J. D.
, and
Turchi
,
C.
,
2019
, “
Cogeneration Using Multi-effect Distillation and a Solar-Powered Supercritical Carbon Dioxide Brayton Cycle
,”
Desalination
,
459
, pp.
20
33
.
21.
Sun
,
Y.
,
Duniam
,
S.
,
Guan
,
Z.
,
Gurgenci
,
H.
,
Dong
,
P.
,
Wang
,
J.
, and
Hooman
,
K.
,
2019
, “
Coupling Supercritical Carbon Dioxide Brayton Cycle With Spray-Assisted Dry Cooling Technology for Concentrated Solar Power
,”
Appl. Energy
,
251
, p.
113328
.
22.
Jiang
,
Y.
,
Liese
,
E.
,
Zitney
,
S. E.
, and
Bhattacharyya
,
D.
,
2018
, “
Design and Dynamic Modeling of Printed Circuit Heat Exchangers for Supercritical Carbon Dioxide Brayton Power Cycles
,”
Appl. Energy
,
231
, pp.
1019
1032
.
23.
Avila-Marin
,
A. L.
,
Fernandez-Reche
,
J.
, and
Tellez
,
F. M.
,
2013
, “
Evaluation of the Potential of Central Receiver Solar Power Plants: Configuration, Optimization and Trends
,”
Appl. Energy
,
112
, pp.
274
288
.
24.
Saeed
,
M.
,
Khatoon
,
S.
, and
Kim
,
M. H.
,
2019
, “
Design Optimization and Performance Analysis of a Supercritical Carbon Dioxide Recompression Brayton Cycle Based on the Detailed Models of the Cycle Components
,”
Energy Convers. Manage.
,
196
, pp.
242
260
.
25.
Rao
,
Z.
,
Xue
,
T.
,
Huang
,
K.
, and
Liao
,
S.
,
2019
, “
Multi-objective Optimization of Supercritical Carbon Dioxide Recompression Brayton Cycle Considering Printed Circuit Recuperator Design
,”
Energy Convers. Manage.
,
201
, p.
112094
.
26.
Kouta
,
A.
,
Al-Sulaiman
,
F.
,
Atif
,
M.
, and
Marshad
,
S. B.
,
2016
, “
Entropy, Exergy, and Cost Analyses of Solar Driven Cogeneration Systems Using Supercritical CO2 Brayton Cycles and MEE-TVC Desalination System
,”
Energy Convers. Manage.
,
115
, pp.
253
264
.
27.
Di Maio D
,
V.
,
Boccitto
,
A.
, and
Caruso
,
G.
,
2015
, “
Supercritical Carbon Dioxide Applications for Energy Conversion Systems
,”
Energy Procedia
,
82
, pp.
819
824
.
28.
Mohammadi
,
K.
, and
McGowan
,
J. G.
,
2019
, “
Thermoeconomic Analysis of Multi-stage Recuperative Brayton Cycles: Part II–Waste Energy Recovery Using CO2 and Organic Rankine Power Cycles
,”
Energy Convers. Manage.
,
185
, pp.
920
934
.
29.
Mondejar
,
M. E.
,
Andreasen
,
J. G.
,
Pierobon
,
L.
,
Larsen
,
U.
,
Thern
,
M.
, and
Haglind
,
F.
,
2018
, “
A Review of the Use of Organic Rankine Cycle Power Systems for Maritime Applications
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
126
151
.
30.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2002
, “NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP,” NIST Standard Reference Database 23: v7.
31.
Song
,
J.
,
Li
,
X.
,
Wang
,
K.
, and
Markides
,
C. N.
,
2020
, “
Parametric Optimisation of a Combined Supercritical CO2 (S-CO2) Cycle and Organic Rankine Cycle (ORC) System for Internal Combustion Engine (ICE) Waste-Heat Recovery
,”
Energy Convers. Manage.
,
218
, p.
112999
.
32.
Liang
,
Y.
,
Bian
,
X.
,
Qian
,
W.
,
Pan
,
M.
,
Ban
,
Z.
, and
Yu
,
Z.
,
2019
, “
Theoretical Analysis of a Regenerative Supercritical Carbon Dioxide Brayton Cycle/Organic Rankine Cycle Dual Loop for Waste Heat Recovery of a Diesel/Natural gas Dual-Fuel Engine
,”
Energy Convers. Manage.
,
197
, p.
111845
.
You do not currently have access to this content.