Abstract

During the gold extraction in opencast mining, many hazardous substances, such as cyanide, are spilled into the water bodies. This study's aim was to develop a novel rotary photocatalytic TiO2-based reactor to remove cyanide from polluted water using a rotary concentrator photoreactor (RCPR). This pilot-scale reactor was tested with synthetic cyanide water at concentrations from 0.05 to 50 ppm, varying the pH and commercial TiO2 load. The optimal conditions from experimental data were 87.4% of cyanide removal and catalyst load of 0.30 g/L at pH 9.5. Further, samples of cyanide water from an opencast gold mine were treated, achieving removal of 68.7% after 240 min. Our value-added is the rotary motion of the set of four glass tubes, achieving satisfactory performance, which is promising for cyanide wastewater treatment with a more compact footprint than a standard compound parabolic collector (CPC) solar photoreactor. Thus, it was possible to reduce mass and heat transfer limitations with a simple design by considering this photoreactor as a photocatalytic process intensifier.

References

1.
Durán
,
A.
,
Monteagudo
,
J. M.
,
San Martín
,
I.
, and
Aguirre
,
M.
,
2010
, “
Decontamination of Industrial Cyanide-Containing Water in a Solar CPC Pilot Plant
,”
Sol. Energy
,
84
(
7
), pp.
1193
1200
.
2.
Betancur-Corredor
,
B.
,
Loaiza-Usuga
,
J. C.
,
Denich
,
M.
, and
Borgemeister
,
C.
,
2018
, “
Gold Mining as a Potential Driver of Development in Colombia: Challenges and Opportunities
,”
J. Cleaner Prod.
,
199
, pp.
538
553
.
3.
Palacios-Torres
,
Y.
,
Caballero-Gallardo
,
K.
, and
Olivero-Verbel
,
J.
,
2018
, “
Mercury Pollution by Gold Mining in a Global Biodiversity Hotspot, the Choco Biogeographic Region, Colombia
,”
Chemosphere
,
193
, pp.
421
430
.
4.
Brüger
,
A.
,
Fafilek
,
G.
,
Restrepo B
,
O. J.
, and
Rojas-Mendoza
,
L.
,
2018
, “
On the Volatilization and Decomposition of Cyanide Contaminations From Gold Mining
,”
Sci. Total Environ.
,
627
, pp.
1167
1173
.
5.
Kuyucak
,
N.
, and
Akcil
,
A.
,
2013
, “
Cyanide and Removal Options From Effluents in Gold Mining and Metallurgical Processes
,”
Miner. Eng.
,
50
, pp.
13
29
.
6.
Gupta
,
P.
,
Ahammad
,
S. Z.
, and
Sreekrishnan
,
T. R.
,
2016
, “
Improving the Cyanide Toxicity Tolerance of Anaerobic Reactor: Microbial Interactions and Toxin Reduction
,”
J. Hazard. Mater.
,
315
, pp.
52
60
.
7.
Rochlin
,
J.
,
2018
, “
Informal Gold Miners, Security and Development in Colombia: Charting the way Forward
,”
Extr. Ind. Soc.
,
5
(
3
), pp.
330
339
.
8.
Chen
,
M.
,
Li
,
S.
,
Jin
,
C.
,
Shao
,
M.
,
Huang
,
Z.
, and
Xie
,
X.
,
2021
, “
Removal of Metal-Cyanide Complexes and Recovery of Pt(II) and Pd(II) From Wastewater Using an Alkali–Tolerant Metal-Organic Resin
,”
J. Hazard. Mater.
,
406
, p.
124315
.
9.
Motegh
,
M.
,
van Ommen
,
J. R.
,
Appel
,
P. W.
, and
Kreutzer
,
M. T.
,
2014
, “
Scale-Up Study of a Multiphase Photocatalytic Reactor Degradation of Cyanide in Water Over TiO2
,”
Environ. Sci. Technol.
,
48
(
3
), pp.
1574
1581
.
10.
Goswami
,
D. Y.
,
1997
, “
A Review of Engineering Developments of Aqueous Phase Solar Photocatalytic Detoxification and Disinfection Processes
,”
ASME J. Sol. Energy Eng.
,
119
(
2
), pp.
101
107
.
11.
Augugliaro
,
V.
,
Blanco-Gálvez
,
J.
,
Cáceres-Vásquez
,
J.
,
García-López
,
E.
,
Loddo
,
V.
,
López-Muñoz
,
M. J.
,
Malato-Rodríguez
,
S.
, et al
,
1999
, “
Photocatalytic Oxidation of Cyanide in Aqueous TiO2 Suspensions Irradiated by Sunlight in Mild and Strong Oxidant Conditions
,”
Catal. Today
,
54
(
2–3
), pp.
245
253
.
12.
Barakat
,
M. A.
,
Chen
,
Y. T.
, and
Huang
,
C. P.
,
2004
, “
Removal of Toxic Cyanide and Cu(II) Ions From Water by Illuminated TiO2 Catalyst
,”
Appl. Catal., B
,
53
(
1
), pp.
13
20
.
13.
Osathaphan
,
K.
,
Chucherdwatanasak
,
B.
,
Rachdawong
,
P.
, and
Sharma
,
V. K.
,
2008
, “
Photocatalytic Oxidation of Cyanide in Aqueous Titanium Dioxide Suspensions: Effect of Ethylenediaminetetraacetate
,”
Sol. Energy
,
82
(
11
), pp.
1031
1036
.
14.
Zhang
,
Y.
,
Zhou
,
J.
,
Chen
,
X.
,
Wang
,
L.
, and
Cai
,
W.
,
2019
, “
Coupling of Heterogeneous Advanced Oxidation Processes and Photocatalysis in Efficient Degradation of Tetracycline Hydrochloride by Fe-Based MOFs: Synergistic Effect and Degradation Pathway
,”
Chem. Eng. J.
,
369
, pp.
745
757
.
15.
Díez
,
A. M.
,
Moreira
,
F. C.
,
Marinho
,
B. A.
,
Espíndola
,
J. C. A.
,
Paulista
,
L. O.
,
Sanromán
,
M. A.
,
Pazos
,
M.
,
Boaventura
,
R. A. R.
, and
Vilar
,
V. J. P.
,
2018
, “
A Step Forward in Heterogeneous Photocatalysis: Process Intensification by Using a Static Mixer as Catalyst Support
,”
Chem. Eng. J.
,
343
, pp.
597
606
.
16.
Rodríguez-Chueca
,
J.
,
García-Cañibano
,
C.
,
Lepistö
,
R. J.
,
Encinas
,
A.
,
Pellinen
,
J.
, and
Marugán
,
J.
,
2019
, “
Intensification of UV-C Tertiary Treatment: Disinfection and Removal of Micropollutants by Sulfate Radical Based Advanced Oxidation Processes
,”
J. Hazard. Mater.
,
372
, pp.
94
102
.
17.
Zhao
,
F.
,
Chen
,
Z.
,
Fan
,
W.
,
Dou
,
J.
,
Li
,
L.
, and
Guo
,
X.
,
2020
, “
Reactor Optimization and Process Intensification of Photocatalysis for Capillary-Based PMMA LSC-Photomicroreactors
,”
Chem. Eng. J.
,
389
, p.
124409
.
18.
Fernández-García
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Pérez
,
M.
,
2010
, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1695
1721
.
19.
Pacheco
,
J. E.
,
Prairie
,
M. R.
, and
Yellowhorse
,
L.
,
1993
, “
Photocatalytic Destruction of Chlorinated Solvents in Water With Solar Energy
,”
ASME J. Sol. Energy Eng.
,
115
(
3
), pp.
123
129
.
20.
Colina-Márquez
,
J.
,
Machuca-Martínez
,
F.
, and
Puma
,
G. L.
,
2010
, “
Radiation Absorption and Optimization of Solar Photocatalytic Reactors for Environmental Applications
,”
Environ. Sci. Technol.
,
44
(
13
), pp.
5112
5120
.
21.
Malato
,
S.
,
Blanco
,
J.
,
Richter
,
C.
,
Curcó
,
D.
, and
Giménez
,
J.
,
1997
, “
Low-Concentration CPC Collectors for Photocatalytic Water Detoxification: Comparison With a Medium Concentrating Solar Collector
,”
Water Sci. Technol.
,
35
(
4
), pp.
157
164
.
22.
Ajona
,
J. I.
, and
Vidal
,
A.
,
2000
, “
The Use of CPC Collectors for Detoxification of Contaminated Water: Design, Construction and Preliminary Results
,”
Sol. Energy
,
68
(
1
), pp.
109
120
.
23.
Arce-Sarria
,
A.
,
Machuca-Martínez
,
F.
,
Bustillo-Lecompte
,
C.
,
Hernández-Ramírez
,
A.
, and
Colina-Márquez
,
J.
,
2018
, “
Degradation and Loss of Antibacterial Activity of Commercial Amoxicillin With TiO2/WO3-Assisted Solar Photocatalysis
,”
Catalysts
,
8
(
6
), p.
222
.
24.
Betancourt-Buitrago
,
L. A.
,
Ossa-Echeverry
,
O. E.
,
Rodriguez-Vallejo
,
J. C.
,
Barraza
,
J. M.
,
Marriaga
,
N.
, and
Machuca-Martínez
,
F.
,
2019
, “
Anoxic Photocatalytic Treatment of Synthetic Mining Wastewater Using TiO2 and Scavengers for Complexed Cyanide Recovery
,”
Photochem. Photobiol. Sci.
,
18
(
4
), pp.
853
862
.
25.
Castilla-Caballero
,
D.
,
Machuca-Martínez
,
F.
,
Bustillo-Lecompte
,
C.
, and
Colina-Márquez
,
J.
,
2018
, “
Photocatalytic Degradation of Commercial Acetaminophen: Evaluation, Modeling, and Scaling-up of Photoreactors
,”
Catalysts
,
8
(
5
), p.
179
.
26.
Colina –Márquez
,
J.
,
López-Vásquez
,
A.
,
Díaz
,
D.
,
Rendón
,
A.
, and
Machuca-Martínez
,
F.
,
2016
, “
Photocatalytic Treatment of A Dye Polluted Industrial Effluent With a Solar Pilot-Scale CPC Reactor
,”
J. Adv. Oxid. Technol.
,
12
(
1
), pp.
93
99
.
27.
Colina-Márquez
,
J.
,
2009
, “
Photocatalytic Mineralization of Commercial Herbicides in a Pilot-Scale Solar CPC Reactor: Photoreactor Modeling and Reaction Kinetics Constants Independent of Radiation Field
,”
Environ. Sci. Technol.
43
(
23
), pp.
8953
8960
.
28.
Blanco
,
J.
,
Malato
,
S.
,
Fernández
,
P.
,
Vidal
,
A.
,
Morales
,
A.
,
Trincado
,
P.
,
Oliveira
,
J. C.
, et al
,
2000
, “
Compound Parabolic Concentrator Technology Development to Commercial Solar Detoxification Applications
,”
Sol. Energy
,
67
(
4–6
), pp.
317
330
.
29.
Colina-Márquez
,
J. A.
,
López-Vásquez
,
A. F.
, and
Machuca-martínez
,
F.
,
2010
, “
Modelamiento de la Reflexión Solar Directa en un Colector Parabólico Compuesto (CPC) Usando la Técnica de ‘ray-Tracing’
,”
DYNA
,
77
(
163
), pp.
132
140
.
30.
Ochoa-Gutiérrez
,
K. S.
,
Tabares-Aguilar
,
E.
,
Mueses
,
,
Machuca-Martínez
,
F.
, and
Li Puma
,
G.
,
2018
, “
A Novel Prototype Offset Multi Tubular Photoreactor (OMTP) for Solar Photocatalytic Degradation of Water Contaminants
,”
Chem. Eng. J.
,
341
, pp.
628
638
.
31.
Mueses
,
M. A.
,
Machuca-Martinez
,
F.
,
Hernández-Ramirez
,
A.
, and
Li Puma
,
G.
,
2015
, “
Effective Radiation Field Model to Scattering—Absorption Applied in Heterogeneous Photocatalytic Reactors
,”
Chem. Eng. J.
,
279
, pp.
442
451
.
32.
Arana
,
J.
,
Doña Rodríguez
,
J. M.
,
González Díaz
,
O.
,
Herrera Melián
,
J. A.
, and
Pérez Peña
,
J.
,
2007
, “
The Effect of Modifying TiO2 on Catechol and Resorcinol Photocatalytic Degradation
,”
ASME J. Sol. Energy Eng.
,
129
(
1
), pp.
80
86
.
33.
García-Ripoll
,
A.
,
Arques
,
A.
,
Vicente
,
R.
,
Domenech
,
A.
, and
Amat
,
A. M.
,
2008
, “
Treatment of Aqueous Solutions Containing Four Commercial Pesticides by Means of TiO2 Solar Photocatalysis
,”
ASME J. Sol. Energy Eng.
,
130
(
4
), p.
0410111
.
34.
Marena
,
M. M.
,
Mueses
,
M. A.
, and
Fiderman
,
M. M.
,
2017
, “
Modeling and Experimental Evaluation of a Non-Isothermal Photocatalytic Solar Reactor: Temperature Effect on the Reaction Rate Kinetics
,”
Ingeniería y competitividad.
,
19
(
2
), pp.
149
160
.
35.
Arellano
,
C. A. P.
, and
Martínez
,
S. S.
,
2010
, “
Effects of pH on the Degradation of Aqueous Ferricyanide by Photolysis and Photocatalysis Under Solar Radiation
,”
Sol. Energy Mater. Sol. Cells
,
94
(
2
), pp.
327
332
.
36.
Betancourt-Buitrago
,
L. A.
,
Hernandez-Ramirez
,
A.
,
Colina-Marquez
,
J. A.
,
Bustillo-Lecompte
,
C. F.
,
Rehmann
,
L.
, and
Machuca-Martinez
,
F.
,
2019
, “
Recent Developments in the Photocatalytic Treatment of Cyanide Wastewater: An Approach to Remediation and Recovery of Metals
,”
Processes
,
7
(
4
), p.
225
.
37.
Marugán
,
J.
,
van Grieken
,
R.
,
Cassano
,
A. E.
, and
Alfano
,
O. M.
,
2008
, “
Intrinsic Kinetic Modeling With Explicit Radiation Absorption Effects of the Photocatalytic Oxidation of Cyanide With TiO2 and Silica-Supported TiO2 Suspensions
,”
Appl. Catal., B
,
85
(
1–2
), pp.
48
60
.
38.
Ahmed
,
S.
,
Rasul
,
M. G.
,
Brown
,
R.
, and
Hashib
,
M. A.
,
2011
, “
Influence of Parameters on the Heterogeneous Photocatalytic Degradation of Pesticides and Phenolic Contaminants in Wastewater: A Short Review
,”
J. Environ. Manage.
,
92
(
3
), pp.
311
330
.
39.
Malato
,
S.
,
Fernández-Ibáñez
,
P.
,
Maldonado
,
M. I.
,
Blanco
,
J.
, and
Gernjak
,
W.
,
2009
, “
Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends
,”
Catal. Today
,
147
(
1
), pp.
1
59
.
40.
Mueses
,
M. A.
, and
Machuca-Martínez
,
F.
,
2012
, “
Modelo Matemático Para Estimación de Eficiencias Fotónicas No-Intrínsecas en Reacciones Fotocatalíticas Heterogéneas
,”
Inf. Tecnol.
,
23
(
3
), pp.
43
50
.
41.
Hernández-García
,
H.
,
López-Arjona
,
H.
,
Rodríguez
,
J. F.
, and
Enríquez
,
R.
,
2008
, “
Preliminary Study of the Disinfection of Secondary Wastewater Using a Solar Photolytic-Photocatalytic Reactor
,”
ASME J. Sol. Energy Eng.
,
130
(
4
), p.
041004
.
42.
Wang
,
D.
,
Mueses
,
M. A.
,
Colina-Márquez
,
J. A.
,
Machuca-Martínez
,
F.
,
Grčićd
,
I.
,
Muniz-Moreira
,
R. P.
, and
Li-Puma
,
G. L.
,
2021
, “
Engineering and Modeling Perspectives on Photocatalytic Reactors for Water Treatment
,”
Water Res.
,
202
, p.
117421
.
43.
Lindner
,
M.
,
Bahnemann
,
D. W.
,
Hirthe
,
B.
, and
Griebler
,
W. D.
,
1997
, “
Solar Water Detoxification: Novel TiO2 Powders as Highly Active Photocatalysts
,”
ASME J. Sol. Energy Eng.
,
119
(
2
), pp.
120
125
.
44.
San Vicente
,
G.
,
Morales
,
A.
,
Germán
,
N.
,
Suarez
,
S.
, and
Sánchez
,
B.
,
2012
, “
SiO2/TiO2 Antireflective Coatings With Photocatalytic Properties Prepared by Sol-Gel for Solar Glass Covers
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041011
.
You do not currently have access to this content.