This paper presents a methodology to estimate solar irradiance using an empiric-stochastic approach, which is based on the computation of normalization parameters from the solar irradiance data. For this study, the solar irradiance data were collected in a weather station during a year. Posttreatment included a trimmed moving average to smooth the data, the performance of a fitting procedure using a simple model to recover normalization parameters, and the estimation of a probability density, which evolves along the daytime, by means of a kernel density estimation method. The normalization parameters correspond to characteristic physical variables that allow us to decouple the short- and long-term behaviors of solar irradiance and to describe their average trends with simple equations. The normalization parameters and the probability densities allowed us to build an empiric-stochastic methodology that generates an estimate of the solar irradiance. Finally, in order to validate our method, we had run simulations of solar irradiance and afterward computed the theoretical generation of solar power, which in turn had been compared with the experimental data retrieved from a commercial photovoltaic system. Since the simulation results show a good agreement with the experimental data, this simple methodology can generate the synthetic data of solar power production and may help to design and test a photovoltaic system before installation.

References

1.
Wittmann
,
M.
,
Breitkreuz
,
H.
,
Breitkreuz
,
H.
,
Schroedter-Homscheidt
,
M.
, and
Eck
,
M.
,
2008
, “
Case Studies on the Use of Solar Irradiance Forecast for Optimized Operation Strategies of Solar Thermal Power Plants
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
,
1
(
1
), pp.
18
27
.
2.
Martín
,
L.
,
Zarzalejo
,
L. F.
,
Polo
,
J.
,
Navarro
,
A.
,
Marchante
,
R.
, and
Cony
,
M.
,
2010
, “
Prediction of Global Solar Irradiance Based on Time Series Analysis: Application to Solar Thermal Power Plants Energy Production Planning
,”
Sol. Energy
,
84
(
10
), pp.
1772
1781
.
3.
Li
,
J.
,
Ward
,
J. K.
,
Tong
,
J.
,
Collins
,
L.
, and
Platt
,
G.
,
2016
, “
Machine Learning for Solar Irradiance Forecasting of Photovoltaic System
,”
Renew. Energy
,
90
, pp.
542
553
.
4.
Ibrahim
,
H.
, and
Anani
,
N.
,
2017
, “
Variations of PV Module Parameters With Irradiance and Temperature
,”
Energy Procedia
,
134
, pp.
276
285
.
5.
Bora
,
B.
,
Kumar
,
R.
,
Sastry
,
O. S.
,
Prasad
,
B.
,
Mondal
,
S.
, and
Tripathi
,
A. K.
,
2018
, “
Energy Rating Estimation of PV Module Technologies for Different Climatic Conditions
,”
Sol. Energy
,
174
, pp.
901
911
.
6.
Weiss
,
A.
, and
Hays
,
C. J.
,
2004
, “
Simulation of Daily Solar Irradiance
,”
Agric. For. Meteorol.
,
123
(
3–4
), pp.
187
199
.
7.
Polo
,
J.
,
Zarzalejo
,
L. F.
,
Marchante
,
R.
, and
Navarro
,
A. A.
,
2011
, “
A Simple Approach to the Synthetic Generation of Solar Irradiance Time Series With High Temporal Resolution
,”
Sol. Energy
,
85
(
5
), pp.
1164
1170
.
8.
Larraneta
,
M.
,
Moreno-Tejera
,
S.
,
Silva-Perez
,
M. A.
, and
Lillo-Bravo
,
I.
,
2015
, “
An Improved Model for the Synthetic Generation of High Temporal Resolution Direct Normal Irradiation Time Series
,”
Sol. Energy
,
122
, pp.
517
528
.
9.
Grantham
,
A. P.
,
Pudney
,
P. J.
,
Ward
,
L. A.
,
Belusko
,
M.
, and
Boland
,
J. W.
,
2017
, “
Generating Synthetic Five-Minute Solar Irradiance Values From Hourly Observations
,”
Sol. Energy
,
147
, pp.
209
221
.
10.
Yang
,
D.
,
Jirutitijaroen
,
P.
, and
Walsh
,
W. M.
,
2012
, “
Hourly Solar Irradiance Time Series Forecasting Using Cloud Cover Index
,”
Sol. Energy
,
86
(
12
), pp.
3531
3543
.
11.
Jahani
,
B.
,
Dinpashoh
,
Y.
, and
Nafchi
,
A. R.
,
2017
, “
Evaluation and Development of Empirical Models for Estimating Daily Solar Radiation
,”
Renew. Sustain. Energy Rev.
,
73
, pp.
878
891
.
12.
Aoun
,
N.
, and
Bouchouicha
,
K.
,
2017
, “
Estimating Daily Global Solar Radiation by Day of the Tyear in Algeria
,”
Eur. Phys. J. Plus
,
132
(
5
), pp.
216:1
12
.
13.
Gueymard
,
C. A.
,
2012
, “
Clear-Sky Irradiance Predictions for Solar Resource Mapping and Large-Scale Applications: Improved Validation Methodology and Detailed Performance Analysis of 18 Broadband Radiative Models
,”
Sol. Energy
,
86
(
8
), pp.
2145
2169
.
14.
Diagne
,
M.
,
David
,
M.
,
Lauret
,
P.
,
Boland
,
J.
, and
Schmutz
,
N.
,
2013
, “
Review of Solar Irradiance Forecasting Methods and a Proposition for Small-Scale Insular Grids
,”
Renew. Sustain. Energy Rev.
,
27
, pp.
65
76
.
15.
Khatib
,
T.
,
Mohamed
,
A.
, and
Sopian
,
K.
,
2012
, “
A Review of Solar Energy Modeling Techniques
,”
Renew. Sustain. Energy Rev.
,
16
(
5
), pp.
2864
2869
.
16.
Wan-Nik
,
W. B.
,
Ibrahim
,
M. Z.
,
Samo
,
K. B.
, and
Muzathik
,
A. M.
,
2012
, “
Monthly Mean Hourly Global Solar Radiation Estimation
,”
Sol. Energy
,
86
(
1
), pp.
379
387
.
17.
Inman
,
R. H.
,
Pedro
,
H. T. C.
, and
Coimbra
,
C. F. M.
,
2013
, “
Solar Forecasting Methods for Renewable Energy Integration
,”
Prog. Energy Combust. Sci.
,
39
(
6
), pp.
535
576
.
18.
Kaushika
,
N. D.
,
Tomar
,
R. K.
, and
Kaushik
,
S. C.
,
2014
, “
Artificial Neural Network Model Based on Interrelationship of Direct, Diffuse and Global Solar Radiations
,”
Sol. Energy
,
103
(
6
), pp.
327
342
.
19.
Gutierrez-Corea
,
F. V.
,
Manso-Callejo
,
M. A.
,
Moreno-Regidor
,
M. P.
, and
Manrique-Sancho
,
M. T.
,
2016
, “
Forecasting Short-Term Solar Irradiance Based on Artificial Neural Networks and Data From Neighboring Meteorological Stations
,”
Sol. Energy
,
134
, pp.
119
131
.
20.
Belcher
,
B. N.
, and
DeGaetano
,
A. T.
,
2007
, “
A Revised Empirical Model to Estimate Solar Radiation Using Automated Surface Weather Observations
,”
Sol. Energy
,
81
(
3
), pp.
329
345
.
21.
Nwokolo
,
S. C.
,
2017
, “
A Comprehensive Review of Empirical Models for Estimating Global Solar Radiation
,”
Renew. Sustain. Energy Rev.
,
78
, pp.
955
995
.
22.
Gordon
,
R.
,
2009
, “
Predicting Solar Radiation At High Resolutions: a Comparison of Time Series Forecasts
,”
Sol. Energy
,
83
(
3
), pp.
342
349
.
23.
Ji
,
W.
, and
Chee
,
K.
,
2011
, “
Prediction of Hourly Solar Radiation Using a Novel Hybrid Model of Arma and Tdnn
,”
Sol. Energy
,
85
(
5
), pp.
808
817
.
24.
Lorenz
,
E.
,
Hurka
,
J.
,
Heinemann
,
D.
, and
Beyer
,
H. G.
,
2009
, “
Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems
,”
IEEE J. Sel. Top. Appl. Earth Observations Rem. Sens.
,
2
(
1
), pp.
2
10
.
25.
Aryaputera
,
A. W.
,
Yang
,
D.
,
Zhao
,
L.
, and
Walsh
,
W. M.
,
2015
, “
Very Short-Term Irradiance Forescasting at Unobserved Locations Using Spatio-Temporal Kriging
,”
Sol. Energy
,
122
, pp.
1266
1278
.
26.
Bernecker
,
D.
,
Riess
,
C.
,
Angelopoulou
,
E.
, and
Hornegger
,
J.
,
2014
, “
Continuous Short-Term Irradiance Forecasts Using Sky Images
,”
Sol. Energy
,
110
, pp.
303
315
.
27.
Perez
,
R.
,
Kivalov
,
S.
,
Schlemmer
,
J.
,
Hemker
,
K., Jr.
,
Renné
,
D.
, and
Hoff
,
T. E.
,
2010
, “
Validation of Short and Medium Term Operational Solar Radiation Forecasts in the US
,”
Sol. Energy
,
84
(
12
), pp.
2161
2172
.
28.
Freedman
,
D.
, and
Diaconis
,
P.
,
1981
, “
On the Histogram as a Density Estimator: L2 Theory
,”
Z. Wahrscheinlichkeitstheorie verw. Gebiete
,
57
(
4
), pp.
453
476
.
29.
Silverman
,
B. W.
,
1986
,
Density Estimation for Statistics and Data Analysis
,
Chapman & Hall/CRC
,
UK
.
30.
Vieira
,
L. E. A.
,
Norton
,
A.
,
de Wit
,
T. D.
,
Kretzchr
,
M.
, and
Schmidt
,
G. A.
,
2012
, “
How the Inclination of Earth’s Orbit Affects Incoming Solar Irradiance
,”
Geophys. Res. Lett.
,
39
(
16
), pp.
L16104
.
31.
Rice
,
H. G.
,
1953
, “
Classes of Recursively Enumerable Sets and Their Desision Problems
,”
Trans. Amer. Math. Soc.
,
74
(
2
), pp.
358
366
.
32.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1972
,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
,
Dover
,
New York
.
33.
S60pc-250 solar panel, manufacturer data sheet.
34.
Saloux
,
E.
,
Teyssedou
,
A.
, and
Sorin
,
M.
,
2011
, “
Explicit Model of Photovoltaic Panels to Determine Voltages and Currents at the Maximum Power Point
,”
Sol. Energy
,
85
(
5
), pp.
713
722
.
35.
Ma
,
T.
,
Yang
,
H.
, and
Lu
,
L.
,
2014
, “
Solar Photovoltaic System Modelling and Performance Prediction
,”
Renew. Sustain. Energy Rev.
,
36
, pp.
304
315
.
36.
Chaibi
,
Y.
,
Salhim
,
M.
,
El-jouni
,
A.
, and
Essadki
,
A.
,
2018
, “
A New Method to Extract the Equivalent Circuit Parameters of a Photovoltaic Panel
,”
Sol. Energy
,
163
, pp.
376
386
.
You do not currently have access to this content.