Operation of solar photovoltaic (PV) systems under high temperatures and high humidity represents one of the major challenges to guarantee higher system’s performance and reliability. The PV conversion efficiency degrades considerably at higher temperatures, while dust accumulation on PV module together with atmospheric water vapor condensation may cause a thick layer of mud that is difficult to be removed. Therefore, thermal management in hot climates is crucial for reliable application of PV systems to prevent the efficiency to drop due to temperature rise. This research focuses on the utilization of phase-change materials (PCM) for passive thermal management of solar systems. The main focus is to explore the effect of utilization of PCM-based cooling elements on the thermal behavior of solar PV modules. This paper presents the mathematical modeling and validation of PV modules. Both simulation and experimental data showed that the significant increase in PV peak temperature in summer affects the module’s efficiency, and consequently produced power, by 3% compared to standard testing condition (STC) as an average over the entire day, while it goes up to 8% and 10% during peak noon hours in winter and summer, respectively.

References

1.
Aïssa
,
B.
,
Isaifan
,
R.
,
Madhavan
,
V.
, and
Abdallah
,
A.
,
2016
, “
Structural and Physical Properties of the Desert-Dust Particles and Their Influence on the PV Module Performance in Qatar
,”
Sci. Rep.
,
6
, p.
31467
.
2.
Abdallah
,
A. A.
,
Martinez
,
D.
,
Figgis
,
B. W.
, and
El Daif
,
O.
,
2016
, “
Performance of Silicon Heterojunction Photovoltaic Modules in Qatar Climatic Conditions
,”
Renewable Energy
,
97
, pp.
860
865
.
3.
Green
,
M. A.
,
2003
, “
General Temperature Dependence of Solar Cell Performance and Implications for Device Modelling
,”
Prog. Photovolt.: Res. Appl.
,
11
(
5
), pp.
333
340
.
4.
Huang
,
M. J.
,
Eames
,
P. C.
, and
Norton
,
B.
,
2004
, “
Thermal Regulation of Building-Integrated Photovoltaics Using Phase Change Materials
,”
Int. J Heat Mass Transfer
,
47
(
12–13
), pp.
2715
2733
.
5.
Smith
,
C.
,
Forster
,
P.
, and
Crook
,
R.
,
2014
, “
Global Analysis of Photovoltaic Energy Output Enhanced by Phase Change Material Cooling
,”
Appl. Energy
,
126
, pp.
21
28
.
6.
Atkin
,
P.
, and
Farid
,
M.
,
2015
, “
Improving the Efficiency of Photovoltaic Cells Using PCM Infused Graphite and Aluminum Fins
,”
Sol. Energy
,
114
, pp.
217
228
.
7.
Huang
,
M. J.
,
Eames
,
P. C.
, and
Norton
,
B.
,
2006
, “
Phase Change Materials for Limiting Temperature Rise in Building Integrated Photovoltaics
,”
Sol. Energy
,
80
(
9
), pp.
1121
1130
.
8.
Huang
,
M. J.
,
2011
, “
The Effect of Using Two PCMs on the Thermal Regulation Performance of BIPV Systems
,”
Sol. Energy Mater. Sol. Cells
,
95
(
3
), pp.
957
963
.
9.
Notton
,
G.
,
Cristofari
,
C.
,
Mattei
,
M.
, and
Poggi
,
P.
,
2005
, “
Modelling of a Double-Glass Photovoltaic Module Using Finite Differences
,”
Appl. Therm. Eng.
,
25
(
17–18
), pp.
2854
2877
.
10.
Armstrong
,
S.
, and
Hurley
,
W. G.
,
2010
, “
A Thermal Model for Photovoltaic Panels Under Varying Atmospheric Conditions
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1488
1495
.
11.
Siddiqui
,
M. U.
,
Arif
,
A. F. M.
,
Kelley
,
L.
, and
Dubowsky
,
S.
,
2012
, “
Three-Dimensional Thermal Modeling of a Photovoltaic Module Under Varying Conditions
,”
Sol. Energy
,
86
(
9
), pp.
2620
2631
.
12.
Fontenault
,
B. J.
, and
Gutierrez-Miravete
,
E.
,
2012
, “
Modeling a Combined Photovoltaic-Thermal Solar Panel
,”
COMSOL Conference
,
Boston
, MA, Oct. 3–5, pp. 3–4.
13.
Tanesab
,
J.
,
Parlevliet
,
D.
,
Whale
,
J.
,
Urmee
,
T.
, and
Pryor
,
T.
,
2015
, “
The Contribution of Dust to Performance Degradation of PV Modules in a Temperate Climate Zone
,”
Sol. Energy
,
120
, pp.
147
157
.
14.
Torres-Lobera
,
D.
, and
Valkealahti
,
S.
,
2014
, “
Inclusive Dynamic Thermal and Electric Simulation Model of Solar PV Systems Under Varying Atmospheric Conditions
,”
Sol. Energy
,
105
, pp.
632
647
.
15.
Kerzmann
,
T.
, and
Schaefer
,
L.
,
2012
, “
System Simulation of a Linear Concentrating Photovoltaics System With an Active Cooling System
,”
Renewable Energy
,
41
, pp.
254
261
.
16.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
, Hoboken, NJ.
17.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Mass
,
E. A.
,
1979
, “
Effect of Finite Width on Heat Transfer and Fluid Flow About an Inclined Rectangular Plate
,”
ASME J. Heat Transfer
,
101
(
2
), pp.
199
204
.
18.
Clark
,
G.
, and
Berdahl
,
P.
,
1980
, “
Radiative Cooling: Resources Cooling and Applications
,”
Fifth National Passive Solar Conference
, Amherst, MA, Oct. 19–26, pp.
167
201
.
19.
Berdahl
,
P.
, and
Fromberg
,
R.
,
1982
, “
The Thermal Radiance of Clear Skies
,”
Sol. Energy
,
29
(
4
), pp.
299
314
.
20.
Murray
,
F. W.
,
1967
, “
On the Computation of Saturation Vapour Pressure
,”
J. Appl. Meteorol.
,
6
, pp.
203
204
.
You do not currently have access to this content.