In order to reach the targets on emissions set by the European Commission, both new and existing buildings must reduce their fossil fuel inputs. Solar thermal cooling supplying on-site renewable heating and cooling could potentially contribute toward this goal. In this paper, a novel concept for solar thermal cooling providing efficient coproduction of cooling and heating based on sorption integrated vacuum tube collectors is proposed. A prototype collector has been constructed and tested in a solar laboratory based on a method developed specifically for sorption integrated collectors. From the test results, the key performance parameters have been determined and used to calibrate a mathematical model for trnsys environment. System simulation has been conducted to optimize the collector and sorption module configuration by performing a parametric study where different vacuum tube center–center (C–C) distances and sorption module designs are tested for a generic hotel in Ankara, Turkey. The parametric study showed that the heating and cooling output per year can be as high as 1000 kWh/m2 for solar fractions above 50%, and that the output per sorption module compared to the prototype can more than double with an optimized design. Furthermore, cooling conversion efficiencies defined as total cooling output per total solar insolation can be as high as 26% while simultaneously converting 35–40% of the incident solar energy into useful hot water.

References

1.
European Parliament
,
2012
, “
Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency
,”
Off. J. Eur. Union Dir.
,
55
, pp.
1
56
.
2.
Henning
,
H. M.
, and
Döll
,
J.
,
2012
, “
Solar Systems for Heating and Cooling of Buildings
,”
Energy Procedia
,
30
, pp.
633
653
.
3.
Ullah
,
K. R.
,
Saidur
,
R.
,
Ping
,
H. W.
,
Akikur
,
R. K.
, and
Shuvo
,
N. H.
,
2013
, “
A Review of Solar Thermal Refrigeration and Cooling Methods
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
499
513
.
4.
Lazzarin
,
R. M.
,
2014
, “
Solar Cooling: PV or Thermal? A Thermodynamic and Economical Analysis
,”
Int. J. Refrig.
,
39
, pp.
38
47
.
5.
Otanicar
,
T.
,
Taylor
,
R. A.
, and
Phelan
,
P. E.
,
2012
, “
Prospects for Solar Cooling—An Economic and Environmental Assessment
,”
Sol. Energy
,
86
(
5
), pp.
1287
1299
.
6.
Henning
,
H. M.
,
2007
, “
Solar Assisted Air Conditioning of Buildings—An Overview
,”
Appl. Therm. Eng.
,
27
(
10
), pp.
1734
1749
.
7.
Hallström
,
O.
,
Füldner
,
G.
,
Spahn
,
H. J.
,
Schnabel
,
L.
, and
Salg
,
F.
,
2014
, “
Development of Collector Integrated Sorption Modules for Solar Heating and Cooling: Performance Simulation
,”
Energy Procedia
,
48
, pp.
67
76
.
8.
Blackman
,
C.
,
Hallström
,
O.
, and
Bales
,
C.
,
2014
, “
Demonstration of Solar Heating and Cooling System Using Sorption Integrated Solar Thermal Collectors
,”
EuroSun 2014
Conference, Aix-les-Bains, France, Sept. 16–19.
9.
Eicker
,
U.
,
Pietruschka
,
D.
,
Haag
,
M.
, and
Schmitt
,
A.
,
2014
, “
Energy and Economic Performance of Solar Cooling Systems World Wide
,”
Energy Procedia
,
57
, pp.
2581
2589
.
10.
Conde
,
M. R.
,
2004
, “
Properties of Aqueous Solutions of Lithium and Calcium Chlorides: Formulations for Use in Air Conditioning Equipment Design
,”
Int. J. Therm. Sci.
,
43
(
4
), pp.
367
382
.
11.
Blackman
,
C.
, and
Bales
,
C.
,
2015
, “
Experimental Evaluation of a Novel Absorption Heat Pump Module for Solar Cooling Applications
,”
Sci. Technol. Built Environ.
,
21
(
3
), pp.
323
331
.
12.
Füldner
,
G.
,
Schnabel
,
L.
,
Horn
,
P.
, and
Spahn
,
H.
,
2013
, “
KollSorp—Entwicklung eines kollektorintegrierten Sorptionssys- tems zur solaren Kühlung und Heizungsunterstützung Einleitung Systembeschreibung
,”
23. Symposium Thermische Solarenergie
, OTTI, pp.
62
64
.
13.
Hallström
,
O.
, and
Füldner
,
G.
,
2015
, “
Integration of Sorption Modules in Sydney Type Vacuum Tube Collector With Air as Heat Transfer Fluid
,”
Energy Procedia
,
70
, pp.
445
453
.
14.
Avesani
,
S.
,
Hallström
,
O.
, and
Füldner
,
G.
,
2014
, “
Integration of Sorption Collector in Office Curtain Wall: Simulation Based Comparison of Different System Configurations
,” EuroSun 2014.
15.
ISO
,
2013
, “
Solar Energy: Solar Thermal Collectors—Test Methods
,” International Organization for Standardization, Geneva, Switzerland, Standard No. EN ISO 9806:2013.
16.
Sørensen
,
B.
,
2011
,
Renewable Energy: Its Physics, Engineering, Environmental Impacts, Economics and Planning
,
Elsevier
,
Amsterdam, The Netherlands
.
17.
SP
,
2012
, “
A Guide to the Standard EN 12975
,” SP Technical Research Institute of Sweden, Borås, Sweden.
18.
Haller
,
M.
,
Perers
,
B.
,
Bales
,
C.
,
Paavilainen
,
J.
,
Dalibard
,
A.
, and
Fischer
,
S.
,
2012
, “
TRNSYS Type 832 v5.01: Dynamic Collector Model by Bengt Perers—Updated Input-Output Reference
,” Institut für Solartechnik SPF, Rapperswil-Jona, Switzerland, pp.
1
18
.
19.
Solar Energy Laboratory
,
2007
,
TRNSYS 16—Mathematical Reference
, Vol.
5
,
Solar Energy Laboratory, University of Wisconsin-Madison
,
Madison, WI
.
20.
Friterm
,
2006
, “
Dry-Cooler Glycol-Water Coolers
,” Friterm, Istanbul, Turkey.
21.
Ambrosetti
,
S.
,
Hallström
,
O.
, and
Zabala
,
V. S.
,
2015
, “
Affordable and Adaptable Public Buildings Through Energy Efficient Retrofitting—D5.3 Dual Thermal Substation Architecture
,” A2PBEER Project, European Union, Brussels, Belgium.
22.
Solar Keymark
,
2016
, “
The Solar Keymark Database
,”
Solar Keymark
, Brussels, Belgium.
You do not currently have access to this content.