Molten salts are currently the only thermal energy storage media operating with multiple hours of energy capacity in commercial concentrated solar power (CSP) plants. Thermal energy is stored by sensible heat in the liquid phase. A lower melting point in the range of 60–120 °C and a decomposition temperature above 500 °C are desired because such a fluid would enhance the overall efficiency of the plants by utilizing less energy to keep the salt in the liquid state and by producing superheated steam at higher temperatures in the Rankine cycle. One promising candidate is a multicomponent NaNO3—KNO3—Ca(NO3)2 molten salt. Different compositions have been reported in literature as the best formulation for CSP plants based on melting temperature. In this paper, the National Renewable Energy Laboratory (NREL) presents the handling, preparation, thermal properties, and characterization of different compositions for this ternary nitrate salt, and comparisons are drawn accordingly. This system has a high tendency to form supercooled liquids with high viscosity that undergo glass formation during cooling. When the proportion of Ca(NO3)2 decreases, the formulations become more thermally stable, the viscosity goes down, and the system increases its degree of crystalline solidification. Differential scanning calorimetry (DSC) tests showed the presence of a ternary eutectoid solid–solid invariant reaction at around 100 °C. The eutectic invariant reaction was resolved between 120 and 133 °C as reported in the literature. Based on DSC and viscosity results, the best composition would seem to be 36 wt. % Ca(NO3)2—16 wt. % NaNO3—48 wt. % KNO3, which showed a low solidification point.

References

1.
Cosar
,
P.
,
Etievant
,
C. I.
, and
Pouget-Abadie
,
X.
,
1978
, “
La Centrale Électrosolaire Themis
,”
Rev. Gen. Therm.
,
200–201
, pp.
627
638
.
2.
Coastal Chemical Co., 2004, “HITEC Heat Transfer Salt
,” Brenntag Co., Houston, TX, http://coal2nuclear.com/MSR%20-%20HITEC%20Heat%20Transfer%20Salt.pdf
3.
Drouot
,
R. L. P.
, and
Hillairet
,
M. J.
,
1984
, “
The Themis Program and the 2500-KW Themis Solar Power Station at Targasonne
,”
ASME J. Sol. Energy Eng.
,
106
, pp.
83
89
.10.1115/1.3267567
4.
Speidel
,
P. J.
,
Kelly
,
B. D.
,
Prairie
,
M. R.
,
Pacheco
,
J. E.
,
Gilbert
,
R. L.
, and
Reilly
,
H. E.
,
1999
, “
Performance of the Solar Two Central Receiver Power Plant
,”
J. Phys. (France)
,
9
, pp.
181
187
.
5.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lázaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part I—Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
31
55
.10.1016/j.rser.2009.07.035
6.
Medrano
,
M.
,
Gil
,
A.
,
Martorell
,
I.
,
Potau
,
X.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High-Temperature Thermal Energy Storage for Power Generation. Part II—Case Studies
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
56
72
.10.1016/j.rser.2009.07.036
7.
Herrmann
,
U.
,
Kelly
,
B.
, and
Price
,
H.
,
2004
, “
Two-Tank Molten Salt Storage for Parabolic Trough Solar Power Plants
,”
Energy
,
29
(
5–6
), pp.
883
893
.10.1016/S0360-5442(03)00193-2
8.
Bradshaw
,
R. W.
, and
Carling
,
R. W.
,
1987
, “
A Review of the Chemical and Physical Properties of Molten Alkali Nitrate Salts and Their Effects on Materials Used for Solar Central Receivers
,”
Sandia National Laboratories
,
Livermore, CA
, Report No. SAND87-8005.
9.
Kearney
,
D.
,
Kelly
,
B.
,
Herrmann
,
U.
,
Cable
,
R.
,
Pacheco
,
J.
,
Mahoney
,
R.
,
Price
,
H.
,
Blake
,
D.
,
Nava
,
P.
, and
Potrovitza
,
N.
,
2004
, “
Engineering Aspects of a Molten Salt Heat Transfer Fluid in a Trough Solar Field
,”
Energy
,
29
(
5–6
), pp.
861
870
.10.1016/S0360-5442(03)00191-9
10.
Donatini
,
F.
,
Zamparelli
,
C.
,
Maccari
,
A.
, and
Vignolini
,
M.
,
2007
, “
High Efficiency Integration of Thermodynamic Solar Plant With Natural Gas Combined Cycle
,”
International Conference on Clean Electrical Power
(
ICCEP’07
),
Capri, Italy
,
May 21–23
.10.1109/ICCEP.2007.384301
11.
Cordaro
,
J. G.
,
Rubin
,
N. C.
, and
Bradshaw
,
R. W.
,
2011
, “
Multicomponent Molten Salt Mixtures Based on Nitrate/Nitrite Anions
,”
J. Sol. Energy Eng.
,
133
(
1
), p.
11014
.10.1115/1.4003418
12.
Peng
,
Q.
,
Ding
,
J.
,
Wei
,
X.
,
Yang
,
J.
, and
Yang
,
X.
,
2010
, “
The Preparation and Properties of Multi-Component Molten Salts
,”
Appl. Energy
,
87
(
9
), pp.
2812
2817
.10.1016/j.apenergy.2009.06.022
13.
Kearney
,
D.
,
Herrmann
,
U.
,
Nava
,
P.
,
Kelly
,
B.
,
Mahoney
,
R.
,
Pacheco
,
J.
,
Cable
,
R.
,
Potrovitza
,
M.
,
Blake
,
D.
, and
Price
,
H.
,
2003
, “
Assessment of a Molten Salt Heat Transfer Fluid in Parabolic Trough Solar Field
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
170
176
.10.1115/1.1565087
14.
Anonymous, 2009, Sandia National Laboratories Internal Communication.
15.
Brosseau
,
D. A.
,
Hlava
,
P. F.
, and
Kelly
,
M. J.
,
2004
, “
Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems Used in Parabolic Trough Power Plants
,”
Sandia National Laboratories
,
Albuquerque, NM and Livermore, CA
, Technical Report No. SAND2004-3207.
16.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2001
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME Proceedings of Solar Forum 2001 Solar Energy: The Power to Choose
,
Washington, DC
,
April 21–25
.
17.
Bradshaw
,
R. W.
,
2010
, “
Viscosity of Multi-Component Molten Nitrate Salts—Liquidus to 200 °C
,”
Sandia National Laboratory
,
Livermore, CA
, Technical Report No. SAND2010-1129.
18.
St. Laurent
,
S. J.
,
Kolb
,
W. J.
, and
Pacheco
,
J. E.
,
2000
, “
Thermocline Thermal Storage Tests for Large-Scale Solar Thermal Power Plants
,”
Sandia National Laboratory
,
Albuquerque, NM
, Technical Report No. SAND2000-2059C.
19.
Bradshaw
,
R. W.
, and
Siegel
,
N. P.
,
2008
, “
Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems
,”
ASME Proceedings of Energy Sustainability (ES2008)
,
Jacksonville, FL
, August 10–14,
ASME
Paper No. ES2008-54174.10.1115/ES2008-54174
20.
Flueckiger
,
S.
,
Yang
,
Z.
, and
Garimella
,
S. V.
,
2011
, “
An Integrated Thermal and Mechanical Investigation of Molten-Salt Thermocline Energy Storage
,”
Appl. Energy
,
88
, pp.
2098
2105
.10.1016/j.apenergy.2010.12.031
21.
Bauer
,
T.
,
Laing
,
D.
, and
Tamme
,
R.
,
2011
, “
Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications
,”
Molten Salts Chemistry and Technology, MS9
,
Trondheim, Norway
,
June 5–9
.
22.
Menzies
,
A.W.C.
, and
Dutt
,
N.N.
,
1911
, “
The Liquidus Surface of the Ternary System Composed of the Nitrates of Potassium, Sodium, and Calcium
,”
J. Am. Chem. Soc.
,
33
(
8
), pp.
1366
1375
.10.1021/ja02221a012
23.
Jänecke
,
E.
,
1942
, “
The Quaternary System Na,K,Ca,Mg // NO3 and Its Subsystems
,”
Z. Elektrochem. Angew. Phys. Chem.
,
48
(
9
), pp.
453
512
(in German).
24.
Bergman
,
A. G.
,
Rassonskaya
,
I. S.
, and
Shmidt
,
N. E.
,
1955
, “
Izvest. Sektora. Fiz.-Khim. Anal., Inst. Obshch. Neorg. Khim.
,”
Tr. Fiz. Inst. Akad. Nauk SSSR
,
26
, pp.
156
163
.
25.
Levin
,
E. M.
,
McMurdie
,
H. F.
, and
Hall
,
F. P.
,
1956
,
Phase Diagrams for Ceramists
,
The American Ceramic Society
, Columbus, OH, Vol.
1
.
26.
Protsenko
,
P. I.
, and
Bergman
,
A. G.
,
1950
, “Binary System KNO3–Ca(NO3)2,”
Zh. Obshch. Khim.
,
20
, pp.
1365
1375
.
27.
Protsenko
,
P. I.
, and
Bergman
,
A. G.
,
1950
, “Binary System Ca(NO3)2–NaNO3,”
Russ. J. Gen. Chem. (English Transl.)
,
20
, pp.
1421
1431
.
28.
Kofler
,
A.
,
1955
, “Mikrothermoanalyse des Systems NaNO3–KNO3,”
Monatsch Chem.
,
86
(
4
), pp.
643
652
.10.1007/BF00902291
29.
Verhoeven
,
J. D.
,
1975
,
Fundamentals of Physical Metallurgy
,
Wiley
,
New York
.
30.
Georig & CO GmbH & Co KG
,
1982
, “
Use of a Ternary Mixture of Salts as a Heat Transmitting Medium and/or as a Heat Storage Medium
,” Patent No. DE3038844, EP0049761 (in German).
31.
Mettler-Toledo
,
2000
, “
Interpreting DSC Curves. Part 1: Dynamic Measurements
,” UserCom 11 1/2000, available at: http://us.mt.com/us/en/home/supportive_content/usercom/TA_UserCom11.html
32.
Wen
,
P.
,
Harrowell
,
P.
, and
Angell
,
C. A.
,
2011
, “
Fast and Slow Components in the Crystallization of a Model Multicomponent System, NaKCa(NO3): The Role of Composition Fluctuation
,”
J. Phys. Chem. A
,
115
, pp.
6260
6268
.10.1021/jp111835z
33.
Raade
,
J. W.
, and
Padowitz
,
D.
,
2011
, “
Development of Molten Salt Heat Transfer Fluid With Low Melting Point and High Thermal Stability
,”
J. Sol. Energy Eng.
,
133
,
031013
.10.1115/1.4004243
You do not currently have access to this content.