The present work investigates, theoretically and experimentally, the thermal performance of a packed bed combined sensible and latent heat storage unit, integrated with the solar water heating system. A one-dimensional porous medium approach with the finite difference technique is used to develop the numerical model to obtain the temperature profiles of both the phase change material (PCM) and heat transfer fluid (HTF), and the molten mass fraction of the PCM at any axial location of the cylindrical storage tank during the charging process. The model also incorporates the effect of the varying fluid inlet temperature to accommodate the actual conditions that prevails in the solar collector. Experimental apparatus utilizing paraffin as PCM, which is filled in high-density polyethylene spherical capsules, is constructed and integrated with a solar flat plate collector to conduct the experiments. The water used as HTF to transfer heat from the solar collector to the storage tank also acts as a sensible heat storage (SHS) material. The results of the numerical model are compared into the experimental results of the temperature profile for various porosities and HTF flow rates. It is found that the results of the numerical model are in good agreement with the experimental results. The performance parameters, such as instantaneous heat stored, cumulative heat stored, and charging rate are also studied in detail.

1.
Beasley
,
D. E.
, and
Clark
,
J. A.
, 1984, “
Transient Response of a Packed Bed for Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
0017-9310,
27
(
9
), pp.
1659
1669
.
2.
Dincer
,
I.
,
Dost
,
S.
, and
Li
,
X.
, 1997, “
Performance Analysis of Sensible Heat Storage Systems for Thermal Applications
,”
Int. J. Energy Res.
0363-907X,
21
, pp.
1157
1171
.
3.
Collares-Pereira
,
M.
,
Gordon
,
J. M.
,
Rabl
,
A.
, and
Zarmi
,
Y.
, 1984, “
Design and Optimization of Solar Industrial Hot Water Systems With Storage
,”
Sol. Energy
0038-092X,
32
(
1
), pp.
121
133
.
4.
Sodha
,
M. S.
,
Sharma
,
A. K.
,
Sawhney
,
R. L.
, and
Kumar
,
A.
, 1997, “
Experimental Performance of Built-in-Storage Solar Water Heating Systems in Laboratory and Field Conditions
,”
Int. J. Energy Res.
0363-907X,
21
, pp.
275
287
.
5.
Reddy
,
K. S.
,
Avanti
,
P.
, and
Kaushika
,
N. D.
, 1999, “
Finite Time Thermal Analysis of Ground Integrated-Collector-Storage Solar Water Heater With Transparent Insulation Cover
,”
Int. J. Energy Res.
0363-907X,
23
, pp.
925
940
.
6.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
, 2003, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
251
283
.
7.
Chen
,
S. L.
, and
Yue
,
J. S.
, 1991, “
Thermal Performance of Cool Storage in Packed Capsules for Air Conditioning
,”
Heat Recovery Syst. CHP
0890-4332,
11
(
6
), pp.
551
561
.
8.
Nallusamy
,
N.
,
Sampath
,
S.
, and
Velraj
,
R.
, 2003, “
Energy Management Through PCM Based Thermal Storage System for Building Air-Conditioning: Tidel Park, Chennai
,”
Proceedings of the International Symposium on Renewable Energy
, Kuala Lumpur, Malaysia, pp.
623
631
.
9.
Ananthanarayanan
,
V.
,
Sahai
,
Y.
,
Mobley
,
C. E.
, and
Rapp
,
R. A.
, 1987, “
Modeling of Fixed Bed Heat Storage Units Utilizing Phase-Change Materials
,”
Metall. Trans. B
0360-2141,
18B
, pp.
339
346
.
10.
Beasley
,
D. E.
, and
Ramanarayanan
,
C.
, 1989, “
Thermal Response of a Packed Bed of Spheres Containing a Phase Change Material
,”
Int. J. Energy Res.
0363-907X,
13
, pp.
253
265
.
11.
Adebiyi
,
G. A.
,
Hodge
,
B. K.
,
Steele
,
W. G.
,
Jalalzadeh-Aza
,
A.
, and
Nsofor
,
E. C.
, 1996, “
Computer Simulation of a High-Temperature Thermal Energy Storage System Employing Multiple Families of Phase-Change Storage Materials
,”
ASME J. Energy Resour. Technol.
0195-0738,
118
, pp.
102
111
.
12.
Barba
,
A.
, and
Spiga
,
M.
, 2003, “
Discharge Mode for Encapsulated PCMs in Storage Tanks
,”
Sol. Energy
0038-092X,
74
(
2
), pp.
141
148
.
13.
Bansal
,
N. K.
, and
Buddhi
,
D.
, 1992, “
Performance Equations of a Collector Cum Storage System Using Phase Change Materials
,”
Sol. Energy
0038-092X,
48
(
3
), pp.
185
194
.
14.
Alva S
,
L. H.
,
González
,
J. E.
, and
Dukhan
,
N.
, 2006, “
Initial Analysis of PCM Integrated Solar Collectors
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
173
177
.
15.
Esen
,
M.
,
Durmus
,
A.
, and
Durmus
,
D.
, 1998, “
Geometric Design of Solar-Aided Latent Heat Store Depending on Various Parameters and Phase Change Materials
,”
Sol. Energy
0038-092X,
62
(
1
), pp.
19
28
.
16.
Mehling
,
H.
,
Cabeza
,
L. F.
,
Hippeli
,
S.
, and
Hiebler
,
S.
, 2003, “
PCM-Module to Improve Hot Water Heat Stores With Stratification
,”
Renewable Energy
0960-1481,
28
(
5
), pp.
699
711
.
17.
Perry
,
R. H.
, and
Green
,
D. W.
, 1997,
Perry’s Chemical Engineers Hand Book
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.