With a 63.2% theoretical efficiency limit, the intermediate band solar cell (IBSC) is a new photovoltaic device proposed to overcome the 40.7% efficiency limit of conventional single gap solar cells. Quantum dot technology can be used to take the IBSC concept into practice. In this respect, the results of experiments carried out recently to characterize IBSC solar cells containing different numbers of InAs quantum dot layers as well as the theoretical models used to describe and analyze the related experimental data are summarized here. Electroluminescence and quantum efficiency measurements confirm that the main operating conditions for IBSCs are complied with in structures with a low number of QD layers. These conditions include the production of photocurrent from absorption of below band gap energy photons and the formation of distinctive quasi-Fermi levels associated with each electronic band (i.e., the conduction, valence, and intermediate bands).

1.
Luque
,
A.
, and
Martí
,
A.
, 1997, “
Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels
,”
Phys. Rev. Lett.
0031-9007,
78
(
26
), pp.
5014
5017
.
2.
Luque
,
A.
,
Martí
,
A.
, and
Cuadra
,
L.
, 2000 “
High Efficiency Solar Cell with Metallic Intermediate Band
,”
Proc. of the 16th European Photovoltaic Solar Energy Conference
,
James & James Ltd.
, London, UK, pp.
59
61
.
3.
Luque
,
A.
, and
Martí
,
A.
, 2001 “
A Metallic Intermediate Band High Efficiency Solar Cell
,”
Prog. Photovoltaics
1062-7995,
9
(
2
), pp.
73
86
.
4.
Martí
,
A.
,
Cuadra
,
L.
, and
Luque
,
A.
, 2001, “
Partial Filling of a Quantum Dot Intermediate Band for Solar Cells
,”
IEEE Trans. Electron Devices
0018-9383,
48
(
10
), pp.
2394
2399
.
5.
Martí
,
A.
,
Cuadra
,
L.
,
López
,
N.
, and
Luque
,
A
, 2004, “
Intermediate Band Solar Cells: Comparison With Shockley-Read-Hall Recombination
,”
Semiconductors
1063-7826,
38
(
8
), pp.
985
987
.
6.
Martí
,
A.
,
Cuadra
,
L.
, and
Luque
,
A.
, 2000, “
Quantum Dot Intermediate Band Solar Cell
,”
Proc. of the 28th IEEE Photovoltaics Specialists Conference
,
IEEE
, New York, pp.
940
943
.
7.
Cuadra
,
L.
,
Martí
,
A.
,
López
,
N.
, and
Luque
,
A.
, 2004, “
Phonon Bottleneck Effect and Photon Absorption in Self-Ordered Quantum Dot Intermediate Band Solar Cells
,”
Proc. of the 19th European Photovoltaic Solar Energy Conference
, Munich, Germany,
WIP-Renewable Energies and ETA
, Florence, Italy.
8.
Sugawara
,
M.
, 1999, “
Self-Assembled InGaAs∕GaAs Quantum Dots
,”
Semiconductors and Semimetals
,
Academic Press
, London, UK.
9.
Martí
,
A.
,
Cuadra
,
L.
, and
Luque
,
A.
, 2002, “
Design Constrains of the Quantum Dot Intermediate Band Solar Cell
,”
Physica E (Amsterdam)
1386-9477,
14
, pp.
150
157
.
10.
Martí
,
A.
,
López
,
N.
,
Antolín
,
E.
,
Cánovas
,
E.
,
Stanley
,
C.
,
Farmer
,
C.
,
Cuadra
,
L.
, and
Luque
,
A.
, 2005, “
Novel Semiconductor Solar Cell Structures: The Quantum Dot Intermediate Band Solar Cell
,”
Thin Solid Films
0040-6090, to be published.
11.
Luque
,
A.
,
Martí
,
A.
,
López
,
N.
,
Antolín
,
E.
,
Cánovas
,
E.
,
Stanley
,
C.
,
Farmer
,
C.
,
Caballero
,
L. J.
,
Cuadra
,
L.
, and
Balenzategui
,
J. L.
, 2005, “
Experimental Analysis of the Quasi-Fermi Level Split in Quantum Dot Intermediate Band Solar Cells
,”
Appl. Phys. Lett.
0003-6951,
87
(
8
), pp.
083505
.
12.
Luque
,
A.
,
Martí
,
A.
,
Stanley
,
C.
,
López
,
N.
,
Cuadra
,
L.
,
Zhou
,
D.
,
Pearson
,
J. L.
, and
McKee
,
A.
, 2004, “
General Equivalent Circuit for Intermediate Band Devices: Potentials, Currents and Electroluminescence
,”
J. Appl. Phys.
0021-8979,
96
(
1
), pp.
903
909
.
13.
Barnham
,
K. W.
, and
Duggan
,
G.
, 1990, “
A New Approach to High-Efficiency Multiband- Gap Solar Cells
,”
J. Appl. Phys.
0021-8979,
67
(
7
), pp.
3490
3493
.
You do not currently have access to this content.