The aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing-edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Experimental data for the baseline case is used to validate the flow solver, prior to its use in exploring these concepts. Calculations have been performed for axial and yawed flow at several wind conditions. Results presented include radial distribution of the normal and tangential forces, shaft torque, root flap moment, and surface pressure distributions at selected radial locations. At low wind speed (7ms) where the flow is fully attached, it is shown that a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients (Cμ0.075). A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to Coanda jet. At high wind speed (15ms) where the flow is separated, both the Coanda jet and Gurney flap become ineffective. The effects of these two concepts on the root bending moments have also been studied.

1.
Xu
,
G.
, and
Sankar
,
L. N.
, 1999, “
Computational Study of Horizontal Axis Wind Turbines
,” AIAA Paper No. 99–0042.
2.
Xu
,
G.
, and
Sankar
,
L. N.
, 2000, “
Effects of Transition, Turbulence and Yaw on the Performance of Horizontal Axis Wind Turbines
,” AIAA Paper No. 2000-0048.
3.
Xu
,
G.
, 2001, “
Computational Studies of Horizontal Axis Wind Turbines
,” Ph.D. dissertation, School of Aerospace Engineering,
Georgia Institute of Technology
, Atlanta.
4.
Benjanirat
,
S.
,
Sankar
,
L. N.
, and
Xu
,
G.
, 2003, “
Evaluation of Turbulence Models for the Prediction of Wind Turbine Aerodynamics
,” AIAA Paper No. 2003-0517.
5.
Benjanirat
,
S.
, and
Sankar
,
L. N.
, 2004, “
Recent Improvement to a Combined Navier-Stokes Full Potential Methodology for Modeling Horizontal Axis Wind Turbines
,” AIAA Paper No. 2004-0830.
6.
Tongchitpakdee
,
C.
,
Benjanirat
,
S.
, and
Sankar
,
L. N.
, 2005, “
Numerical Simulation of the Aerodynamics of Horizontal Axis Wind Turbines under Yawed Flow Conditions
,” AIAA Paper No. 2005-0773.
7.
Duque
,
E. P. N.
,
van Dam
,
C. P.
, and
Hughes
,
S.
, 1999, “
Navier-Stokes Simulations of the NREL Combined Experiment Phase II Rotor
,” AIAA Paper No. 99-0037.
8.
Sørensen
,
N. N.
, and
Hansen
,
M. O. L.
, 1998, “
Rotor Performance Predictions using a Navier-Stokes Method
,” AIAA Paper No. 98-0025.
9.
Sørensen
,
N. N.
, and
Michelsen
,
J. A.
, 2000, “
Aerodynamic Predictions for the Unsteady Aerodynamics Experiment Phase-II Rotor at the National Renewable Energy Laboratory
,” AIAA Paper No. 2000-0037.
10.
Sørensen
,
N. N.
,
Michelsen
,
J. A.
, and
Schreck
,
S.
, 2002, “
Prediction of the NREL/NASA Ames Wind Tunnel Test
,” AIAA Paper No. 2002-0031.
11.
Shaw
,
S. T.
,
Hill
,
J. L.
, and
Qin
,
N.
, 2005, “
Application of Engineering Transition Models to an Isolated Helicopter Rotor in Hovering Flight
,” AIAA Paper No. 2005-0467.
12.
Englar
,
R. J.
, and
Huson
,
G. G.
, 1983, “
Development of Advanced Circulation Control Wing High Lift Airfoils
,” AIAA Paper No. 83-1847.
13.
Englar
,
R. J.
, 2000, “
Circulation Control Pneumatic Aerodynamics: Blown Force and Moment Augmentation and Modification; Past, Present and the Future
,” AIAA Paper No. 2000-2541.
14.
Englar
,
R. J.
,
Smith
,
M. J.
,
Kelley
,
S. M.
, and
Rover
,
R. C.
III
, 1993, “
Development of Circulation Control Technology for Application to Advanced Subsonic Aircraft
,”
AIAA Aerospace Sciences Conference
, AIAA Paper No. 93-0644.
15.
Englar
,
R. J.
,
Smith
,
M. J.
,
Kelley
,
S. M.
, and
Rover
,
R. C.
III
, 1994, “
Application of Circulation Control to Advanced Subsonic Transport Aircraft, Part I: Airfoil Development
,”
J. Aircr.
0021-8669,
31
(
5
), pp.
1160
1168
.
16.
Englar
,
R. J.
,
Smith
,
M. J.
,
Kelley
,
S. M.
, and
Rover
,
R. C.
III
, 1994, “
Application of Circulation Control to Advanced Subsonic Transport Aircraft, Part II: Transport Application
,”
J. Aircr.
0021-8669,
31
(
5
), pp.
1169
1177
.
17.
Shrewsbury
,
G. D.
, and
Sankar
,
L. N.
, 1990, “
Dynamic Stall of Circulation Control Airfoils
,” AIAA Paper No. 90-0573.
18.
Liu
,
Y.
,
Sankar
,
L. N.
,
Englar
,
R. J.
, and
Ahuja
,
K. K.
, 2001, “
Numerical Simulations of the Steady and Unsteady Aerodynamic Characteristics of a Circulation Control Wing
,” AIAA Paper No. 2001-0704.
19.
Liu
,
Y.
, 2003, “
Numerical Simulations of the Aerodynamic Characteristics of Circulation Control Wing Sections
,” Ph.D. dissertation, School of Aerospace Engineering,
Georgia Institute of Technology
, Atlanta.
20.
Liu
,
Y.
,
Sankar
,
L. N.
,
Englar
,
R. J.
,
Ahuja
,
K. K.
, and
Gaeta
,
R.
, 2004, “
Computational Evaluation of the Steady and Pulsed Jet Effects on the Performance of a Circulation Control Wing Section
,” AIAA Paper No. 2004-0056.
21.
Metral
,
A. R.
, 1939, “
On the Phenomenon of Fluid Veins and their Application, the Coanda Effect
,” AF Translation, F-TS-786-RE.
22.
Lieback
,
R. H.
, 1978, “
Design of Subsonic Airfoils for High Lift
,”
J. Aircr.
0021-8669, Vol.
15
, No.
9
, Sep. pp.
547
561
.
23.
Giguére
,
P.
,
Lemay
,
J.
, and
Dumas
,
G.
, 1995, “
Gurney Flap Effects and Scaling for Low-Speed Airfoils
,” AIAA Paper No. 95-1881.
24.
Jang
,
C. S.
,
Ross
,
J. C.
, and
Cummings
,
R. M.
, 1992, “
Computational Evaluation of an Airfoil With a Gurney Flap
,” AIAA Paper No. 92-2708.
25.
Storms
,
B. L.
, and
Jang
,
C. S.
, 1994, “
Lift Enhancement of an Airfoil Using a Gurney Flap and Vortex Generators
,”
J. Aircr.
0021-8669,
31
(
3
), pp.
542
547
.
26.
Jeffrey
,
D. R. M.
, and
Hurst
,
D. W.
, 1996, “
Aerodynamics of the Gurney Flap
,” AIAA Paper No. 96-2418.
27.
Myose
,
R.
,
Papadakis
,
M.
, and
Heron
,
I.
, 1998, “
Gurney Flap Experiments on Airfoils, Wings, and Reflection Plane Model
,”
J. Aircr.
0021-8669,
35
(
2
), pp.
206
211
.
28.
van Dam
,
C. P.
,
Yen
,
D. T.
, and
Vijgen
,
P. M. H. W.
, 1999, “
Gurney Flap Experiments on Airfoil and Wings
,”
J. Aircr.
0021-8669,
36
(
2
), pp.
484
486
.
29.
Brown
,
L.
, and
Filippone
,
A.
, 2003, “
Aerofoil at Low Speeds With Gurney Flaps
,”
Aeronaut. J.
0001-9240,
107
(
1075
), pp.
539
546
.
30.
Chandrasekhara
,
M. S.
,
Martin
,
P. B.
, and
Tung
,
C.
, 2004, “
Compressible Dynamic Stall Performance of Variable Droop Leading Edge Airfoil With a Gurney Flap
,” AIAA Paper No. 2004-0041.
31.
Rhee
,
M.
, 2004, “
A Computational Study of an Oscillating VR-12 Airfoil With a Gurney Flap
,” AIAA Paper No. 2004-5202.
32.
Guzel
,
G.
,
Sankar
,
L. N.
, and
Rhee
,
M.
, 2005, “
Computational Investigation of the Effects of Gurney Flap on the Aerodynamic Performance of VR-12 Airfoil
,” AIAA Paper No. 2005-4960.
33.
Bieniawski
,
S.
, and
Kroo
,
I. M.
, 2003, “
Flutter Suppression Using Micro-Trailing Edge Effectors
,” AIAA Paper No. 2003-1941.
34.
Lee
,
H.
,
Kroo
,
I. M.
, and
Bieniawski
,
S.
, 2003, “
Flutter Suppression for High Aspect Ratio Flexible Wings Using Microflaps
,” AIAA Paper No. 2002-1717.
35.
Lee
,
H.
, and
Kroo
,
I. M.
, 2004, “
Computational Investigation of Airfoils With Miniature Trailing Edge Control Surfaces
,” AIAA Paper No. 2004-1051.
36.
Yen
,
D. T.
,
van Dam
,
C. P.
,
Bräeuchle
,
F.
,
Smith
,
R. L.
, and
Collins
,
S. D.
, 2000, “
Active Load Control and Lift Enhancement Using MEM Translational Tabs
,” AIAA Paper No. 2000-2422.
37.
Yen
,
D. T.
,
van Dam
,
C. P.
,
Smith
,
R. L.
, and
Collins
,
S. D.
, 2001, “
Active Load Control for Airfoils Using Microtabs
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
(
4
), pp.
282
289
.
38.
Yen
,
D. T.
,
van Dam
,
C. P.
,
Michel
,
J.
, and
Morrison
,
P.
, 2002, “
Load Control for Turbine Blades: A Non-Traditional Microtab Approach
,” AIAA Paper No. 2002-0054.
39.
Hand
,
M. M.
,
Simms
,
D. A.
,
Fingersh
,
L. J.
,
Jager
,
D. W.
,
Cotrell
,
J. R.
,
Schreck
,
S.
, and
Larwood
,
S. M.
, 2001, “
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,”
National Renewable Energy Laboratory
, NREL/TP-500–29955, Golden, CO.
40.
Simms
,
D. A.
,
Schreck
,
S.
,
Hand
,
M. M.
, and
Fingersh
,
L. J.
, 2001, “
NREL Unsteady Aerodynamics Experiment in the NASA Ames Wind Tunnel: A Comparison of Predictions to Measurements
,” NICH Report No. TP-500-29494.
41.
Fingersh
,
L. J.
,
Simms
,
D. A.
,
Hand
,
M. M.
,
Jager
,
D. W.
,
Cotrell
,
J. R.
,
Robinson
,
M.
,
Schreck
,
S.
, and
Larwood
,
S. M.
, 2001, “
Wind Tunnel Testing of NREL’s Unsteady Aerodynamics Experiment
,” AIAA Paper No. 2001-0035.
42.
Giguère
,
P.
, and
Selig
,
M. S.
, 1999, “
Design of a Tapered and Twisted Blade for the NREL Combined Experiment Rotor
,”
National Renewable Energy Laboratory
, NREL/SR-500-26173, Golden, CO.
43.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-0439.
44.
Eppler
,
R.
, 1990,
Airfoil Design and Data
,
Springer-Verlag
, Berlin.
45.
Benjanirat
,
S.
, 2005, “
Computational Studies of the Horizontal Axis Wind Turbines in High Wind Speed Conditions Using Advanced Turbulence Models
,” Ph.D. dissertation, School of Aerospace Engineering,
Georgia Institute of Technology
, Atlanta.
46.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
, 1989, “
A Semi-Empirical Model for Dynamic Stall
,”
J. Am. Helicopter Soc.
0002-8711,
34
(
3
), pp.
3
17
.
47.
McCroskey
,
W. J.
,
Carr
,
L. W.
, and
McAlister
,
K. W.
, 1976, “
Dynamic Stall Experiments on Oscillating Airfoils
,”
AIAA J.
0001-1452,
14
(
1
), pp.
57
63
.
You do not currently have access to this content.