Radiation heat transfer within a solar chemical reactor for the co-production of zinc and syngas is analyzed by the Monte Carlo ray-tracing method. The reactor is treated as a 3D nonisothermal cavity-receiver lined with ZnO particles that are directly exposed to concentrated solar irradiation and undergo endothermic reduction by CH4 at above 1300 K. The analysis includes coupling to conduction/convection heat transfer and chemical kinetics. A calculation of the apparent absorptivity indicates the cavity’s approach to a blackbody absorber, for either diffuse or specular reflecting inner walls. Numerically calculated temperature distributions, zinc production rates, and thermal efficiencies are validated with experimental measurements in a solar furnace with a 5-kW prototype reactor. At 1600 K, the zinc production rate reached 0.12 mol/min and the reactor’s thermal efficiency exceeded 16%. Scaling up the reactor to power levels of up to 1 MW while keeping constant the relative geometrical dimensions and the solar power flux at 2000 suns results in thermal efficiencies of up to 54%.

1.
Steinfeld
,
A.
,
Frei
,
A.
,
Kuhn
,
P.
, and
Wuillemin
,
D.
,
1995
, “
Solarthermal Production of Zinc and Syngas Via Combined ZnO-Reduction and CH4-Reforming Processes
,”
Int. J. Hydrogen Energy
,
20
, pp.
793
804
.
2.
Steinfeld
,
A.
,
Larson
,
C.
,
Palumbo
,
R.
, and
Foley
,
M.
,
1996
, “
Thermodynamic Analysis of the Co-Production of Zinc and Synthesis Gas Using Solar Process Heat
,”
Energy Int. J.
,
21
, pp.
205
222
.
3.
Werder
,
M.
, and
Steinfeld
,
A.
,
2000
, “
Life Cycle Assessment of the Conventional and Solarthermal Production of Zinc and Synthesis Gas
,”
Energy
,
25
, pp.
395
409
.
4.
Steinfeld
,
A.
, and
Spiewak
,
I.
,
1998
, “
Economic Evaluation of the Solar Thermal Co-Production of Zinc and Synthesis Gas
,”
Energy Convers. Manage.
,
39
, pp.
1513
1518
.
5.
Steinfeld
,
A.
,
Brack
,
M.
,
Meier
,
A.
,
Weidenkaff
,
A.
, and
Wuillemin
,
D.
,
1998
, “
A Solar Chemical Reactor for the Co-Production of Zinc and Synthesis Gas
,”
Energy
,
23
, pp.
803
814
.
6.
Kra¨upl
,
S.
, and
Steinfeld
,
A.
,
2001
, “
Experimental Investigation of a Vortex-Flow Solar Chemical Reactor for the Combined ZnO-Reduction and CH4-Reforming
,”
ASME J. Sol. Energy Eng.
,
123
, pp.
237
243
.
7.
Kra¨upl
,
S.
, and
Steinfeld
,
A.
,
2003
, “
Operational Performance of a 5 kW Solar Chemical Reactor for the Co-Production of Zinc and Syngas
,”
ASME J. Sol. Energy Eng.
,
125
, pp.
124
126
.
8.
Siegel, R., and Howell, J. R., 2002, Thermal Radiation Heat Transfer, 4th ed., Hemisphere Publishing Corporation, Washington, Chaps. 10.5 and 17.5.
9.
Modest, M. F., 2003, Radiative Heat Transfer, 2nd ed., Academic Press, New York, Chap. 20.
10.
Mahan, J. R., 2002, Radiation Heat Transfer: A Statistical Approach, Wiley, New York, Part III.
11.
Wen-Jei, Y., Hiroshi, T., and Kazuhiko, K., 1995, “Radiative Heat Transfer by the Monte Carlo Method,” in Advances in Heat Transfer, 27, Academic Press, San Diego.
12.
Farmer, J. T., and Howell, J. R., 1998, “Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media,” in Advances in Heat Transfer, 31, Academic Press, San Diego, pp. 333–429.
13.
Howell
,
J. R.
,
1998
, “
The Monte Carlo Method in Radiative Heat Transfer
,”
J. Heat Transfer
,
120
, pp.
547
560
.
14.
Marakis
,
J. G.
,
Papapavlou
,
C.
, and
Kakaras
,
E.
,
2000
, “
A Parametric Study of Radiative Heat Transfer in Pulverised Coal Furnaces
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2961
2971
.
15.
Tesse´
,
L.
,
Dupoirieux
,
F.
,
Zamuner
,
B.
, and
Taine
,
J.
,
2002
, “
Radiative Transfer in Real Gases Using Reciprocal and Forward Monte Carlo Methods and a Correlated-k Approach
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2797
2814
.
16.
Mischler, D. U., 1995, “Strahlungsu¨bergang in Partikelwolken,” Dissertation No. 11218, Swiss Federal Institute of Technology Zurich (ETHZ).
17.
Mischler
,
D.
, and
Steinfeld
,
A.
,
1995
, “
Nonisothermal Nongray Absorbing-Emitting-Scattering Suspension of Fe3O4-Particles Under Concentrated Solar Irradiation
,”
J. Heat Transfer
,
117
, pp.
346
354
.
18.
Hirsch, D., 2003, “Decarbonization of Fossil Fuels—Hydrogen Production by the Solar Thermal Decomposition of Natural Gas Using a Vortex-Flow Solar Reactor,” Dissertation No. 15212, Swiss Federal Institute of Technology Zurich (ETHZ).
19.
Lipinski
,
W.
, and
Steinfeld
,
A.
,
2004
, “
Heterogeneous Thermochemical Decomposition Under Direct Irradiation
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1907
1916
.
20.
Welford, W. T., and Winston, R., 1989, High Collection Nonimaging Optics, Academic Press, San Diego.
21.
Haueter
,
P.
,
Seitz
,
T.
, and
Steinfeld
,
A.
,
1999
, “
A New High-Flux Solar Furnace for High-Temperature Thermo-Chemical Research
,”
ASME J. Sol. Energy Eng.
,
121
, pp.
77
80
.
22.
Sparrow, E. M., and Cess, R. D., 1978, Radiation Heat Transfer, 3rd ed., Hemisphere Publishing Corporation, Washington.
23.
Lin
,
S. H.
, and
Sparrow
,
E. M.
,
1965
, “
Radiant Interchange Among Curved Specularly Reflecting Surfaces—Application to Cylindrical and Conical Cavities
,”
J. Heat Transfer
,
87
, pp.
299
307
.
24.
Steinfeld
,
A.
,
1991
, “
Apparent Absorptance for Diffusely and Specularly Reflecting Sperical Cavities
,”
Int. J. Heat Mass Transfer
,
34
, pp.
1895
1897
.
25.
Steinfeld
,
A.
,
1993
, “
Radiative Transfer in a Diffusely/Specularly Reflecting Spherical Cavity Containing a Gray Medium
,”
Wa¨rme und Stoffu¨bertragung (Heat and Mass Transfer)
,
28
, pp.
65
68
.
26.
Sparrow
,
E. M.
, and
Jonsson
,
V. K.
,
1963
, “
Thermal Radiation Absorption in Rectangular-Groove Cavities
,”
J. Appl. Mech.
,
30
, pp.
237
244
.
27.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1962
, “
Absorption of Thermal Radiation in a V-Groove Cavity
,”
J. Heat Transfer
,
5
, pp.
1111
1115
.
28.
Steinfeld
,
A.
, and
Schubnell
,
M.
,
1993
, “
Optimum Aperture Size and Operating Temperature of a Solar Cavity-Receiver
,”
Sol. Energy
,
50
, pp.
19
25
.
29.
National Bureau of Standards, 1985, JANAF Thermochemical Tables, 3rd ed., Washington, D.C.
30.
Barin, I., 1995, Thermochemical Data of Pure Substances, 3rd ed., VCH Verlagsgesellschaft, Weinheim.
31.
Roine, A., 2002, Outokumpu HSC Chemistry for Windows Version 5.11, Outokumpu Research Oy, Pori, Finland.
You do not currently have access to this content.