Abstract

This paper investigates the impact of threshold-crossing events on ship capsizing through a probabilistic model that predicts random wave heights. Utilizing statistical data from wave height observations, this paper proposes that random waves can be approximated and modeled using the Wiener process, employing autocorrelation function identification and probabilistic statistical verification methods. The threshold-crossing duration of a random wave is just the period of the wave exceeds a given threshold, which can reflect the frequency property of the stochastic sea waves. And the probability distribution of the period can theoretically be determined using the derived probability density function for the time interval between any two adjacent crossings of the Wiener process and a threshold. Based on the above theories, the capsizing probabilities of a civil ship sailing in different wave areas are analyzed under different safety thresholds considering certain ratios of the ship's intrinsic period and wave period. The research results can provide a reference for the anti-overturning design of the ships under the action of random waves.

References

1.
Li
,
F.
,
Van Gelder
,
P. H. A. J. M.
,
Ranasinghe
,
R. W. M. R. J. B.
,
Callaghan
,
D. P.
, and
Jongejan
,
R. B.
,
2014
, “
Probabilistic Modelling of Extreme Storms Along the Dutch Coast
,”
Coastal Eng.
,
86
, pp.
1
13
.10.1016/j.coastaleng.2013.12.009
2.
Wist
,
H. T.
,
2003
, “
Statistical Properties of Successive Ocean Wave Parameters
,” Doctoral dissertation,
Norwegian University of Science and Technology
,
Trondheim, Norway
.
3.
Niclasen
,
B. A.
,
Simonsen
,
K.
, and
Magnusson
,
A. K.
,
2010
, “
Wave Forecasts and Small-Vessel Safety: A Review of Operational Warning Parameters
,”
Mar. Struct.
,
23
(
1
), pp.
1
21
.10.1016/j.marstruc.2010.02.001
4.
Doong
,
D. J.
,
Chuang
,
L. H.
,
Wu
,
L. C.
,
Fan
,
Y. M.
,
Kao
,
C. C.
, and
Wang
,
J. H.
,
2012
, “
Development of an Operational Coastal Flooding Early Warning System
,”
Natural Hazards Earth Syst. Sci.
,
12
(
2
), pp.
379
390
.10.5194/nhess-12-379-2012
5.
Li
,
M.
, and
Liu
,
K.
,
2020
, “
Probabilistic Prediction of Significant Wave Height Using Dynamic Bayesian Network and Information Flow
,”
Water
,
12
(
8
), p.
2075
.10.3390/w12082075
6.
Liu
,
G.
,
Yu
,
Y.
,
Kou
,
Y.
,
Du
,
X.
,
Han
,
L.
,
Wu
,
F.
, and
Liu
,
S.
,
2020
, “
Joint Probability Analysis of Marine Environmental Elements
,”
Ocean Eng.
,
215
, p.
107879
.10.1016/j.oceaneng.2020.107879
7.
Vanem
,
E.
,
2016
, “
Joint Statistical Models for Significant Wave Height and Wave Period in a Changing Climate
,”
Mar. Struct.
,
49
, pp.
180
205
.10.1016/j.marstruc.2016.06.001
8.
Baarholm
,
G. S.
,
Haver
,
S.
, and
Økland
,
O. D.
,
2010
, “
Combining Contours of Significant Wave Height and Peak Period With Platform Response Distributions for Predicting Design Response
,”
Mar. Struct.
,
23
(
2
), pp.
147
163
.10.1016/j.marstruc.2010.03.001
9.
Mackay
,
E.
, and
Johanning
,
L.
,
2018
, “
A Generalised Equivalent Storm Model for Long-Term Statistics of Ocean Waves
,”
Coastal Eng.
,
140
, pp.
411
428
.10.1016/j.coastaleng.2018.06.001
10.
Corbella
,
S.
, and
Stretch
,
D. D.
,
2013
, “
Simulating a Multivariate Sea Storm Using Archimedean Copulas
,”
Coastal Eng.
,
76
, pp.
68
78
.10.1016/j.coastaleng.2013.01.011
11.
Liu
,
G.
,
Xu
,
P.
,
Kou
,
Y.
,
Wu
,
F.
,
Yang
,
Y.
,
Zhao
,
D.
, and
You
,
Z.
,
2021
, “
Design Wave Height Parameter Estimation Model Reflecting the Influence of Typhoon Time and Space
,”
J. Mar. Sci. Eng.
,
9
(
9
), p.
950
.10.3390/jmse9090950
12.
Mori
,
N.
, and
Yasuda
,
T.
,
2002
, “
A Weakly non-Gaussian Model of Wave Height Distribution for Random Wave Train
,”
Ocean Eng.
,
29
(
10
), pp.
1219
1231
.10.1016/S0029-8018(01)00075-0
13.
Tayfun
,
M. A.
, and
Fedele
,
F.
,
2007
, “
Wave-Height Distributions and Nonlinear Effects
,”
Ocean Eng.
,
34
(
11–12
), pp.
1631
1649
.10.1016/j.oceaneng.2006.11.006
14.
Gramstad
,
O.
,
Bitner-Gregersen
,
E.
,
Breivik
,
Ø.
,
Magnusson
,
A. K.
,
Reistad
,
M.
, and
Aarnes
,
O. J.
,
2018
, “
Analysis of Rogue Waves in North-Sea in-Situ Surface Wave Data
,”
Proceedings of the 37th International Conference on Ocean, Offshore and Arctic Engineering
,
Madrid, Spain,
June 17–22
, Paper No. OMAE2018-77810.
15.
Masina
,
M.
,
Lamberti
,
A.
, and
Archetti
,
R.
,
2015
, “
Coastal Flooding: A Copula Based Approach for Estimating the Joint Probability of Water Levels and Waves
,”
Coastal Eng.
,
97
, pp.
37
52
.10.1016/j.coastaleng.2014.12.010
16.
Mazas
,
F.
, and
Hamm
,
L.
,
2017
, “
An Event-Based Approach for Extreme Joint Probabilities of Waves and Sea Levels
,”
Coastal Eng.
,
122
, pp.
44
59
.10.1016/j.coastaleng.2017.02.003
17.
Ditlevsen
,
O.
,
2002
, “
Stochastic Model for Joint Wave and Wind Loads on Offshore Structures
,”
Struct. Saf.
,
24
(
2–4
), pp.
139
163
.10.1016/S0167-4730(02)00022-X
18.
Caires
,
S.
,
Swail
,
V. R.
, and
Wang
,
X. L.
,
2006
, “
Projection and Analysis of Extreme Wave Climate
,”
J. Clim.
,
19
(
21
), pp.
5581
5605
.10.1175/JCLI3918.1
19.
Callaghan
,
D. P.
,
Nielsen
,
P.
,
Short
,
A.
, and
Ranasinghe
,
R. W. M. R. J. B.
,
2008
, “
Statistical Simulation of Wave Climate and Extreme Beach Erosion
,”
Coastal Eng.
,
55
(
5
), pp.
375
390
.10.1016/j.coastaleng.2007.12.003
20.
Rosenblatt
,
M.
,
2012
,
Random Processes
,
Springer Science & Business Media
,
New York
.
21.
Liao
,
M.
,
2013
,
Applied Stochastic Processes
,
CRC Press
,
London
.
22.
Grandell
,
J.
,
1997
,
Mixed Poisson Processes
,
CRC Press
,
London
.
23.
Skorokhod
,
A. V.
,
1982
,
Studies in the Theory of Random Processes
,
Courier Dover Publications
,
New York
.
24.
Xiu
,
L.
,
Juan
,
L.
,
Xiu-Rong
,
C.
,
Xiao-Sheng
,
S.
,
Dan-Song
,
Y.
, and
Xue
,
Y.
,
2015
, “
Lifetime Prognosis of Blowout Preventer Valve for Offshore Platform Based on Wiener Process
,” The 27th Chinese Control and Decision Conference (
CCDC
),
Qingdao, China, May 23–35, pp. 2432–2436.
10.1109/CCDC.2015.7162329
25.
Wang
,
X.
,
Jiang
,
P.
,
Guo
,
B.
, and
Cheng
,
Z.
,
2014
, “
Real‐Time Reliability Evaluation With a General Wiener Process‐Based Degradation Model
,”
Qual. Reliab. Eng. Int.
,
30
(
2
), pp.
205
220
.10.1002/qre.1489
26.
Wang
,
X.
,
2010
, “
Wiener Processes With Random Effects for Degradation Data
,”
J. Multivar. Anal.
,
101
(
2
), pp.
340
351
.10.1016/j.jmva.2008.12.007
27.
Zhang
,
Z.
,
Luo
,
C.
, and
Zhao
,
Z.
,
2020
, “
Application of Probabilistic Method in Maximum Tsunami Height Prediction Considering Stochastic Seabed Topography
,”
Nat. Hazards
,
104
(
3
), pp.
2511
2530
.10.1007/s11069-020-04283-3
28.
Liu
,
L.
,
Li
,
X.
,
Sun
,
F.
, and
Wang
,
N.
,
2016
, “
A General Accelerated Degradation Model Based on the Wiener Process
,”
Materials
,
9
(
12
), p.
981
.10.3390/ma9120981
29.
Zhang
,
Z.
,
Zhou
,
M.
, and
Fang
,
M.
,
2021
, “
First-Passage Probability Analysis of Wiener Process Using Different Methods and Its Applications in the Evaluation of Structural Durability Degradation
,”
Eur. J. Environ. Civ. Eng.
,
25
(
10
), pp.
1763
1781
.10.1080/19648189.2019.1601134
30.
Zhang
,
Z.
,
Liu
,
X.
,
Zhang
,
Y.
,
Zhou
,
M.
, and
Chen
,
J.
,
2020
, “
Time Interval of Multiple Crossings of the Wiener Process and a Fixed Threshold in Engineering
,”
Mech. Syst. Signal Process.
,
135
, p.
106389
.10.1016/j.ymssp.2019.106389
31.
Shao
,
L.
,
2004
, “
Wave Formation and Wave Grade
,”
Proceedings of the Symposium on New Experiences and Technologies for Preventing Ship Accidents
,
Dalian, China
, May, pp.
347
352
.
32.
Yu
,
Y.
,
2011
,
Random Wave and Its Engineering Application
,
Dalian University of Technology Press
,
Dalian, China
.
33.
Krata
,
P.
, and
Wawrzynski
,
W.
,
2017
, “
Prediction of Ship resonant rolling-Related Dangerous Zones With Regard to the Equivalent Metacentric Height Governing Natural Frequency of Roll
,”
TransNav: Int. J. Mar. Navig. Saf. Sea Transp.
,
11
(
4
), pp.
607
614
.10.12716/1001.11.04.05
You do not currently have access to this content.